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Abstract

In the paper we cast serious doubt on the usefulness of the index of concordance (C-index)
and the coefficient of determination for survival models. The index of concordance is known
for not being useful when selecting the best of several competing models because of its
nonsensitivity. We show that it can even go down when a significant covariate is added
to a correctly specified model, including cases when there is no censoring and no tied
event times or covariate values, meaning that the usual suspects are not responsible. The
coefficient of determination was originally suggested because its formula gives the usual 𝑅2
when used in linear regression. But, the analogy with the linear model is gone when we use
survival analysis models, since it crucially depends on the null model which changes with
the change in the fitted model. We illustrate the expected behaviour of such measures and
compare with an alternative Schemper–Henderson measure.
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1. Introduction
Many measures of explained variation and predictive accuracy have been proposed for use
in survival data modelling (Austin et al., 2017; Choodari-Oskooei et al., 2012a, 2012b). The
most-cited are variants of the C-index of concordance, orginally proposed in 1982 by Harrell
et al. (1982), and of a coefficient of variation, popularised by Nagelkerke (1991). The former
has more than 3200 Google Scholar citations as of autumn 2023 and the latter more than
6700. Both papers continue to be highly cited, with about 1400 and 1700 Google Scholar
citations respectively since 2020. Although the C-index and coefficient of determination are
defined generally, our focus is on their use in survival analysis.

Recently Hartman et al. (2023) described some limitations of the C-index for survival
outcomes. We agree with these, and in this short note we draw attention to what we consider
to be a further and major drawback. We also take the opportunity to describe a concern we
have with the use of the coefficient of determination.
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2. The C-index can go down when it shouldn’t
Table 1 shows some of the results of two Cox proportional hazards models fit to the well
known Primary Biliary Cirrhosis (PBC) dataset often used for illustrating survival data
methods (Fleming & Harrington, 1991). We used the version available in the survival

package in R and removed, as is common, 25 patients who had a transplant during follow-up,
to leave 𝑛 = 393 patients and 59 % censoring. In the first model we include a single covariate,
bilirubin, and in the second model we added albumin as another covariate. Results with
transplants considered as either events or as censored cases were very similar to those in
Table 1. The C-index is produced by the coxph() routine and takes into account censoring
and tied data. We include also, as a comparator, an explained variation measure proposed
by Schemper and Henderson (2000), which we label SH.

Table 1. Summary of Primary Biliary Cirrhosis dataset analysis.

Model 1 Model 2

Covariate Coef. Std. Err. Z Coef. Std. Err. Z

Bilirubin 0.145 0.012 12.5 0.131 0.012 10.7

Albumin −1.318 0.194 −6.8

C-index 0.789 0.771

SH 0.163 0.245

Legend: SH = Schemper–Henderson measure.
Note: Likelihood ratio test for Model 2 v Model 1: 40.6 on df = 1 (𝑝 < 2 × 10−10)

We draw attention to the fall in C-index when Model 2 is fitted. Neither the C-index
nor the SH measure is guaranteed to increase when a model is extended as they are not
directly linked to the partial likelihood, which of course cannot decrease. If an unimportant
covariate is added we would expect the C-index and SH to stay around the same, or perhaps
fall a little. But what caught our attention in these fits was the decrease in C-index despite
the addition of a highly statistically significant new covariate. The SH measure increases as
we would hope when we move from Model 1 to Model 2.

The C-index can be affected by tied covariates, tied event times, censoring and model
misspecification. To rule these out we generated 1000 simulated data sets, loosely based
on the PBC data but without ties or censoring, with Weibull event times and covariates
similar to bilirubin and albumin. We took a sample size 𝑛 = 250, chosen to be intermediate
between the number of observed events in the PBC data (161) and the total sample size
(393). Weibull is of course a special case of a Cox proportional hazards model, meaning a
Cox fit is correctly specified.

Figure 1 summarises the results. In the left panel (a) we compare the C-indices produced
when Cox models with one and two covariates were fitted to the data. In the right panel (b)
we do the same for the SH measure. The lines of equality are shown and different symbols
are used for simulations where a likelihood ratio test does or does not reject the simpler
one-covariate model.

The C-index fell when the second covariate was added in 14 % of simulations. It fell
or increased by just a small amount (0.01 or less) in 30 % of simulations. Some 93 % of
simulations produced statistically significant likelihood ratio tests when the two models
were compared. Within this group, 13 % of simulations still had a reduction in C-index and
28 % had a reduction or only a very small increase. The SH measure never fell when the



A cautionary note on two measures of explained variation in survival analysis 3

second covariate was added.
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Figure 1. Simulation results. C-index (a) and SH scores (b) with one and two covariates based
on PBC data. Gray dots mark simulations where a likelihood ratio test indicates significant model
improvement at the 5 % level. Black dots indicate simulations with no significant model improvement.

To explore further we simulated uncensored exponential survival data with bivariate
Normal covariates with standard 𝒩 (0, 1) marginals and correlation ρ. The true model had
hazard exp(β1𝑥1 + β2𝑥2) and again we fitted a Cox model first with just 𝑥1 and then with
both 𝑥1 and 𝑥2 included. We used a likelihood ratio test to assess whether including 𝑥2 led
to an improved fit, testing at the 5 % level, and we calculated the C-index and SH for both
model fits. To investigate the effect of covariate skewness we repeated the simulations with
as covariates the squared values of 𝑥1 and 𝑥2, standardised to zero mean and unit variance.
These transformed covariates were used for both simulating data and subsequent model
fitting, so there was no misspecification.

Table 2 summarises some of our results. The values shown are based on 1000 repetitions
of samples of size 𝑛 = 250, with β1 = 0.25 and β2 = 0.15. The table shows, as percentages,
the proportion 𝑃(sig) of simulations where adding 𝑥2 was deemed statistically significant,
and then for each of C-index and SH the overall proportion of repetitions where the measure
fell when 𝑥2 was added, 𝑃(C↓) and 𝑃(SH↓) respectively, and the proportions of repetitions
with significant 𝑥2 where the measure fell, 𝑃(C↓∣sig) and 𝑃(SH↓∣sig).

In all of the scenarios there are occasions where the C-index falls when a statistically
significant covariate is added. The proportions are sometimes low, but they are not zero.
The issue seems to be exacerbated by having skew covariates.

3. The coefficient of determination doesn’t compare models well
Nagelkerke (1991) discusses a coefficient of determination that can be used in general statisti-
cal modelling. It is

𝑅2 = 1 − exp [−2
𝑛
{ℓ(β̂) − ℓ(0)}] ,

where 𝑛 is the sample size and ℓ(β̂) and ℓ(0) are the maximised log-likelihoods with and
without covariates. In the survival analysis context 𝑛 might be replaced with the number of
uncensored observations.
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Table 2. Simulation results with Normal or transformed (squared) Normal covariates.

C-index SH

ρ is_tr 𝑃(sig) 𝑃(C↓) 𝑃(C↓∣sig) 𝑃(SH↓) 𝑃(SH↓∣sig)

0.0 No 63.1 8.6 2.2 1.6 0.6

−0.5 No 52.0 11.9 1.9 3.8 0.0

0.5 No 54.0 11.4 3.0 2.6 0.0

0.0 Yes 61.1 10.0 4.4 1.1 0.0

−0.5 Yes 60.2 17.0 7.8 1.3 0.0

0.5 Yes 59.1 16.4 7.1 1.8 0.0

Notes: For every simulation scenario (row), we report the following quantities in the columns: the
correlation value ρ, whether transformed (squared) Normal covariates are used (is_tr ∈ {No,Yes),
the percentages of repetitions with statistically significant 𝑥2 after allowing for 𝑥1, and the percent-
ages where the measure fell when 𝑥2 was added, both overall and conditional on significant 𝑥2 for
the C-index (fourth and fifth column) and SH (sixth and seventh column).

To illustrate our concern, we simulated a single sample of 𝑛 = 1000 uncensored exponen-
tial survival data with a single binary covariate, and we fitted three nested models. These,
and their survival functions, are

Exponential: 𝑆(𝑡) = exp{−𝑒β𝑥 𝑡}

Weibull: 𝑆(𝑡) = exp{−𝑒β𝑥 𝑡σ}

Cox: 𝑆(𝑡) = exp{−𝑒β𝑥𝐴0(𝑡)}

where σ > 0 and with 𝐴0(𝑡) unspecified. The resulting coefficients of determination and SH
measures are presented in Table 3.

Table 3. Calculated coefficient of determination (𝑅2) and
Schemper–Henderson (SH) measure for the three simulated sce-
narios.

Model

Exponential Weibull Cox

𝑅2 0.572 0.461 0.427

SH 0.265 0.265 0.265

Thus the coefficients decrease as we fit a more flexible model, which is clearly counter-
intuitive. Figure 2 provides the explanation. Conditional upon the covariate all three models
are correctly specified and all three fit the data very well. But if covariates are excluded the
true marginal survival distribution is not exponential and a fit of that model is poor. The
Weibull model is more flexible and gives an improved fit to the marginal, and the flexible
Cox model fits the marginal well. The more flexible the model the higher the ℓ(0) and so
for the same ℓ(β̂) the lower the 𝑅2. This coefficient of determination should not be used to
compare different models.
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Since all three models are correctly specified, a sensible measure of explained variation
should give very similar values for them. As shown above, the SH measure gives equal
values to the third decimal.
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Figure 2. Fitted survival curves for coefficient of determination example. The grey dashed lines are
conditional upon covariates. The three fits are almost indistinguishable from the true conditional
survival curves.

4. Summary
We have added another concern to those already known about the usage of the C-index.
We do not see any reason for using it.

The definition of the coefficient of determination is based on the fact that such a definition
is equal to the usual 𝑅2 in linear regression. But in linear regression the null model stays the
same for different models, while in nonlinear models, including those in survival analysis,
it does not. This makes this measure useless for comparing models and its interpretation
essentially worthless.
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