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Abstract

In this article, we present the selective order statistic sampling scheme as a

promising approach to estimate the parameter of the univariate power function dis-

tribution. We derive the maximum likelihood estimator and the method of moments

estimator of the power function distribution parameter as well as the reliability pa-

rameter and the ratio of two means. Moreover, we derive the asymptotic properties

of the proposed estimators. Finally, we conduct simulation studies to investigate the

performance of the selective order statistic scheme and concluded that it suits the

power function distribution and we found that the maximum likelihood estimator

is better than the method of moments estimator under the selective order statistic

sampling scheme.

1 Introduction

The power function distribution (PFD) is one of the most common distributions used to

model real data sets in different areas including but not limited to lifetime, income, indus-

try and environment. Many researchers investigated the characteristics of the PFD and

showed how handy and flexible this distribution is compared to the list of well known

distributions such as exponential, Weibull, gamma, lognormal, etc. Menconi (1995) pro-

posed using a simple model to find failure rate and reliability figures and found that the

models based on PFD are applicable, simple and flexible compared to other distributions

such as lognormal and Weibull. Menconi and Bary (1996) concluded that the PFD is

more handy and flexible alternative compared to more complex models used to measure

the reliability of electrical components. A major challenge that encounters researchers

in lifetime, industry, environment and even agriculture is the sampling and experimental

cost of data for the subjects of interest. In addition, the expensive nature of the experi-

ment urges researchers to consider effective sampling schemes to pursue their missions.

In certain fields of research, data collection of certain variables of interest is expensive,

difficult to achieve and time-consuming task while ranking the items without actual quan-

tifications is an affordable mission. The ranked set sampling (RSS) scheme proposed by
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McIntyer (1952) is a promising sampling approach that is proved to increase efficiency

and reduce the cost. Depending on visual ranking rather than actual quantification of the

units, an RSS of size can be obtained as follows. First, we select m independent random

samples each of size m from the population of interest. Second, the j-th order statistic of

the j-th sample can be detected visually or by any crude method and the selected unit will

be chosen for actual quantification. The process may be repeated r-times to obtain an RSS

of size n = rm. Although RSS has been used as a sampling technique for estimating the

characteristics of a nonparametric population, several authors showed that the accuracy

can be improved under parametric setups. Also, they showed that simple random sample

(SRS) fail to produce an efficient estimator of the population mean compared to RSS and

its significant modifications (Halls and Dell, 1966; Dell and Clutter, 1972; Stokes and

Sager, 1988; Muttlak, 1997; Alodat and Al-Saleh, 2001; Chen et al., 2004 and Alodat et

al., 2010). McIntyer (1952) main goal of RSS scheme was directed to estimate the popu-

lation mean for a nonparametric problem. Later Takahasi and Wakimoto (1968) showed

that the sample mean based on an RSS is the minimum variance unbiased estimator of the

population mean. Also they concluded, based on SRS and RSS of the same size, that the

relative efficiency of the sample mean using RSS with respect to SRS is bounded between

1 and m+1
2

. RSS is a very useful technique when relying on ranking units through visual

inspection leading to negligible cost.

The selective order statistic (SOS) works selectively depending on the amount of in-

formation available in the data set. First, we note that the total number of possible sam-

pling schemes is
(

2m−1
m

)

which can be used to select a sample from the population of

interest by the means of visual ranking. These schemes are denoted by

Sm = (j1, . . . , jm) : ji = 1, . . . ,m; i = 1, . . . ,m

where the m-tuple (j1, . . . , jm) ∈ Sm mean that the unit of order ji is selected from the

i-th set, i = 1, . . . ,m. For a specific regular parametric family, we seek the sampling

scheme among those in Sm that collects the largest amount of Fisher’s information about

the parameter θ. To do so, we define Yj:m to be the j-th order statistic obtained from the

SRS of size m and let IYj:m
(θ) denote the Fisher’s information numbers based on Yj:m.

The SOS will be obtained as follows:

1. Find that value j0 ∈ 1, . . . ,m such that j0 = argmax
1≤j≤m

IYj:m
(θ).

2. For each of the m sets, we choose for actual measurement the unit with order j0.

The rest of the article is organized as follows. In Section 2, we introduce the PFD

and derive the Fisher information number of the j-th order statistic. Also we investigate

the performance of RSS and SOS via their information numbers and identify the proper

sampling scheme that suits the PFD. In Section 3, we derive the maximum likelihood

estimators (MLE), the method of moments estimators (MOME) of the PFD parameter, the

reliability parameter as well as the ratio for two PFD parameters. Moreover, we obtain

the asymptotic distribution of the parameter estimates in addition to the large-sample

confidence intervals. In Section 4, we conduct a simulation study to investigate the bias

and mean squared errors (MSE) of the parameter estimates as well as the confidence

interval width. Finally, we outline the proofs of the theory of the article in the appendix.
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2 Power Function Distribution

Let X be a random variable distributed as PFD with shape parameter β and scale param-

eter α, then the probability density function (pdf) is given by

f(x;α, β) =
βxβ−1

αβ
; 0 < x < α, α > 0, β > 0.

If we use the mean parameterization by taking the scale parameter α = 1 and β = θ
1−θ

,

then the pdf of the PDF will be

f(x; θ) =
θ

1− θ
x

2θ−1
1−θ ; 0 < x < 1, 0 < θ < 1. (2.1)

It is easy to check that the mean and the variance are E(X) = θ and σ2
X = θ(1−θ)2

2−θ
,

respectively.

Also, the cumulative distribution function is F (x) = x
θ

1−θ , 0 < x < 1. The proper-

ties and merits of the PFD were studied in the literature to investigate the reliability of

products and asses the performance of electrical components in industrial and electrical

engineering (Meniconi, 1995 and Meniconi and Barry, 1996). The PFD is preferred over

log normal, exponential and Weibull distributions since it fits the failure data sets more

efficiently (Ahsanullah, 1989; Meniconi, 1995; Saran and Pandey, 2004 and Saleem et al.,

2010). Choosing the appropriate sampling scheme depends on the setup of the experiment

and the nature of the target population and it may occur in certain practical situations that

SOS is more convenient than the traditional SRS and RSS. To investigate this claim and

to make inference about PFD parameter, we find the pdf of Yj:m as follows:

fYj:m
(y; θ) = Cj,m

θ

1− θ
y

θ(j+1)−1
1−θ

(

1− y
θ

1−θ

)m−j

, (2.2)

where

Cj,m =
m!

(j − 1)!(m− j)!

for j = 1, 2, . . . ,m.

Theorem 1. If Yj:m is the j-th order statistic with pdf given in (2.2), then

IYj:m
(θ) =

Aj,m

θ2(1− θ)2
,

where

Aj,m = Cj,m

∫ 1

0

(

1 + j log v − (m− j)v log v

1− v

)2

vj−1(1− v)m−j dv

The proof of the theorem is outlined in the Appendix.

The term Aj,m clearly shows that the value of j maximizing IYj:m
(θ) does not depend

on θ, hence it suffices to maximize the quantity I∗Yj:m
= θ2(1 − θ)2IYj:m

(θ) instead of

IYj:m
(θ). However, the difficulty of this theoretical maximization leads to the numerical
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maximization as an alternative option. Table 1 shows the amount of information (I∗)

contained in the sample about the PFD parameter for different values of j andm. It can be

noticed from Table 1 that maximizing Fisher information number IYj:m
(θ), as a function

of j, depends on the set size m. Our findings show that the amount of information about

θ contained in the order statistic Yj:m attains its maximum at j = j0 = 1, for 1 ≤ m ≤ 5
and at j = j0 = 2, for 6 ≤ m ≤ 10. These results provide a sufficient evidence to collect

our samples using the selective order statistic Yj0:m when the underlying distribution is

PFD with parameter θ.

Table 1: The values of I∗Yj:m
for different values of j and m

m j I∗Yj:m
m j I∗Yj:m

m j I∗Yj:m

2 1 1.808 6 4 2.920 9 1 5.472

2 1.000 5 1.984 2 6.282

3 1 2.500 6 1.000 3 6.123

2 1.924 7 1 4.631 4 5.558

3 1.000 2 5.004 5 4.789

4 1 3.111 3 4.574 6 3.910

2 2.777 4 3.831 7 2.969

3 1.960 5 2.944 8 1.993

4 1.000 6 1.988 9 1.000

5 1 3.662 7 1.000 10 1 5.856

2 3.569 8 1 5.065 2 6.874

3 2.875 2 5.660 3 6.850

4 1.975 3 5.365 4 6.377

5 1.000 4 4.710 5 5.673

6 1 4.166 5 3.880 6 4.840

2 4.309 6 2.959 7 3.930

3 3.745 7 1.991 8 2.975

8 1.000 9 1.994

10 1.000

Obtaining the Fisher information matrix is essential in estimation and it is part of

the asymptotic distribution of the parameter estimator. On the other hand, deriving the

confidence interval is vital in many applications and practical situations (Alodat et al.,

2009; Al-Rawwash et al., 2010, and Al-Rawwash et al., 2014). To elaborate on the results

in Table 1, let I
(m)
SOS(θ) and I

(m)
RSS(θ) denote the amounts of information about θ contained

in the SOS and RSS schemes respectively and define the relative information number

based on the two schemes as follows:

RI =
I
(m)
SOS(θ)

I
(m)
RSS(θ)

.

Table 2 shows the values of I
(m)
SOS(θ), I

(m)
RSS(θ) and RI for m = 2, . . . , 10 that will

be obtained based on the results of Table 1. For example if m = 2, then I
(2)
RSS(θ) =
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1.80823 + 1 = 2.8082 and I
(2)
SOS(θ) = 2 × 1.80823 = 3.6165. The results in Table 2

clearly show that the SOS is more efficient than the RSS scheme in estimating the PFD

parameter which is a motivation to adopt the SOS scheme.

Table 2: The values of I
(m)
SOS(θ), I

(m)
RSS(θ), and RI for m = 2, . . . , 10

m I
(m)
RSS(θ) I

(m)
SOS(θ) RI

2 2.808 3.616 1.288

3 5.424 7.500 1.383

4 8.848 12.444 1.406

5 13.082 18.310 1.400

6 18.124 25.854 1.427

7 23.972 35.028 1.461

8 30.630 45.280 1.478

9 38.096 56.538 1.484

10 46.369 68.740 1.482

3 Estimation

In this section we derive the MLE and the MOME of the PFD parameter based on the

SOS scheme described in Section 2. In addition, we propose an estimator of the reliability

parameter and discuss the asymptotic properties of the derived estimators. In addition, we

will consider obtaining an SOS sample of size n based on n simple random subsamples

each of size m.

3.1 Estimating PDF parameter using MLE

Theorem 2. Let y =
(

Y
(1)
j0:m′ , Y

(2)
j0:m′ , . . . , Y

(n)
j0:m

)

be an SOS sample obtained from PFD(θ).

Also, let θ̂MLE be the MLE of θ, then under certain regularity conditions we have

1. θ̂MLE
P−→ θ

2.
√
n
(

θ̂MLE − θ
)

D−→ N
(

0, I−1
Yj0:m

(θ)
)

3. There is one unique MLE θ̂MLE ∈ (0, 1)

The proof of the theorem is outlined in the Appendix.

Now if we assume that θ̂RSS,MLE is the MLE of θ based on an RSS of r cycles each

of size m, we may compare θ̂MLE and θ̂RSS,MLE and show that
√
n(θ̂RSS,MLE − θ)

D−→
N(0, I−1

RSS(θ)), where IRSS(θ) = 1
m

∑m

i=1 IYi:m
(θ) and n = rm. Hence the asymptotic

relative efficiency of θ̂MLE with respect to θ̂RSS,MLE is given by

Aeff
(

θ̂RSS,MLE, θ̂MLE

)

=
I−1
RSS(θ)

I−1
Yj0:m

(θ)
=

IYj0:m
(θ)

1
m

∑m

i=1 IYi:m
(θ)
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Table 3: The efficiency values of θ̂RSS,MLE with respect to θ̂MLE for different values of m

m Aeff
(

θ̂RSS,MLE, θ̂MLE

)

2 1.288

3 1.383

4 1.406

5 1.400

6 1.427

7 1.461

8 1.478

9 1.484

10 1.482

Note that Aeff (θ̂RSS,MLE, θ̂MLE) is free of θ and its values are more than 1 for all m.

Table 3 shows the values of Aeff (θ̂RSS,MLE, θ̂MLE) for different m where the MLE based

on SOS is more efficient that the MLE based on RSS when estimating the PFD parameter.

Hereafter, we carry out the estimation procedure based on SOS sampling scheme and we

adopt the notation θ̂MLE and θ̂MOM to represent the maximum likelihood estimator and

the method of moments estimator of θ, respectively.

3.2 Estimating the Reliability Parameter

Discussing the quantity R = P (X < Y ) is important in reliability analysis where X and

Y are two independent random variables. If X and Y have power function distributions

PFD(θ1) and PFD(θ2), respectively, then the true value of R represents a major tool

in industrial applications. As an example, we may consider X to be the stress value

of a randomly selected device while Y represents the strength of the device. In such

a case, R represents the probability that the selected device is functioning successfully.

For more details and interpretations concerning the values of R, see Masoom and Woo

(2005) and the references therein. In this section we derive an estimator of R when

X ∼ PFD(θ1) and Y ∼ PFD(θ2), independently. Depending on the PFD assumption,

we get the following

R =
θ2(1− θ1)

θ1 + θ2 − 2θ1θ2
.

Using the invariance property, the MLE of R will be

R̂MLE =
θ̂2,MLE(1− θ̂1,MLE)

θ̂1,MLE + θ̂2,MLE − 2θ̂1,MLE θ̂2,MLE

where θ̂1,MLE and θ̂2,MLE are the MLE estimators of θ1 and θ2, respectively.

Theorem 3. Let x =
(

X
(1)
j0:m

, X
(2)
j0:m

, . . . , X
(n)
j0:m

)

and y =
(

Y
(1)
j0:m

, Y
(2)
j0:m

, . . . , Y
(n)
j0:m

)

be

two independent SOS samples obtained from PFD(θ1) and PFD(θ2), respectively. Then,

under certain regularity conditions we have
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1. R̂MLE is a consistent estimator of R

2.
√
n(R̂MLE −R)

D−→ N(0, σ2
R̂MLE

),

where

σ2
R̂MLE

=
2θ21θ

2
2(1− θ1)

2(1− θ2)
2

Aj,m(θ1 + θ2 − 2θ1θ2)4
.

Remark. Theorem 3 allows us to conclude that
√
nRMLE−R

σ̂
R̂MLE

D−→ N(0, 1) which can be

utilized to obtain a large-sample confidence interval for the parameter R. hence a large

sample 95% confidence interval for R is R̂MLE ± 1.96

√

σ̂
R̂MLE

n
.

3.3 Method of Moment Estimators

To derive the MOME for both parameters θ and R, we rely on the results in Table 1 and

assume that j = 1 and 2, then we find the expected value of the j-th order statistic based

on the PFD(θ) as follows:

E(Yj:m) = Cj,m

θ

1− θ

∫ 1

0

y
(j+1)θ−1

1−θ
+1
(

1− y
θ

1−θ

)m−j

dy

= Cj,m

θ

1− θ

∫ 1

0

y
jθ

1−θ

(

1− y
θ

1−θ

)m−j

dy

Setting ν = y
θ

1−θ , we get

E(Yj:m) = Cj,m

∫ 1

0

ν
1
θ
+j−2(1− ν)m−j dν

= Cj,mΓ(m− j + 1)
Γ
(

1
θ
+ j − 1

)

Γ
(

1
θ
+m

)

=







m!θm∏m−1
i=0 (iθ+1)

, if j = 1

m!θm−1
∏m−1

i=0 (iθ+1)
, if j = 2

.

Similarly it can be shown that the variance of Yj:m is

V (θ) =
m!Γ

(

2
θ
+ j − 2

)

(j − 1)!Γ
(

2
θ
+m− 1

) −
(

m!Γ
(

1
θ
+ j − 1

)

(j − 1)!Γ
(

1
θ
+m

)

)2

Theorem 4. Let Y
(1)
j0:m

, . . . , Y
(n)
j0:m

be an SOS sample from PFD(θ) where j0 = 1 or 2 and

m ≤ 10, then there exists a unique MOME for θ.

Let θ̂1,MOM and θ̂2,MOM denote the MOME of θ1 and θ2, respectively, then the plug-in

estimator of the reliability parameter based on MOME is given as follows:

R̂MOM =
θ̂2,MOM(1− θ̂1,MOM)

θ̂1,MOM + θ̂2,MOM − 2θ̂1,MOM θ̂2,MOM
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Theorem 5. Let R̂MOM be the plug-in MOME of R, then

1. R̂MOM is consistent estimator of R.

2.
√
n(R̂MOM −R)

D−→ N(0, T 2(θ1, θ2))

3.
√
nT −1(θ̂1,MOM , θ̂2,MOM)(R̂MOM −R)

D−→ N(0, 1)

where

T −1(θ̂1,MOM , θ̂2,MOM) =
1

T (θ̂1,MOM , θ̂2,MOM)

and

T 2(θ1, θ2) =
V (θ1)K

′2(θ1)θ
2
2(1− θ2)

2 + V (θ2)K
′2(θ2)θ

2
1(1− θ1)

2

(θ1 + θ2 − 2θ1θ2)4
.

Accordingly, a large-sample 95% confidence interval for R is

R̂MOM ± 1.96√
n

× T (θ̂1,MOM , θ̂2,MOM)

3.4 Estimating the Ratio of Two Means

It is important in some applications to estimate the ratio of two population means which

will be obtained in this article assuming that the data is selected from PFD(θ1) and

PFD(θ2). In addition, we carry out the estimation process using the MLE and the MOME

as well to find the estimator of the population mean. To this end, we assume that θ̂1,MLE

and θ̂2,MLE are the MLE estimators of θ1 and θ2, respectively and θ̂1,MOM and θ̂2,MOM

are the MOME of θ1 and θ2, respectively. To estimate the ratio ψ = θ2
θ1

, we present the

following theorem.

Theorem 6. Consider the following two estimators of ψ:

ψ̂MLE =
θ̂2,MLE

θ̂1,MLE

and ψ̂MOM =
θ̂2,MOM

θ̂1,MOM

.

Than

1.
√
nJ −1(θ̂1,MLE, θ̂2,MLE)(ψ̂MLE − ψ)

D−→ N(0, 1)

2.
√
nL−1(θ̂1,MOM , θ̂2,MOM)(ψ̂MOM − ψ)

D−→ N(0, 1)

where

J (θ1, θ2) =

(

θ22(1− θ1)
2 +

θ22(1−θ2)2

θ21

)

Aj,m

and

L(θ1, θ2) = θ22θ
−4
1 V (θ1)K

′2(θ1) + θ−2
1 V (θ2)K

′2(θ2)

The proof is similar to those of Theorem 4 and Theorem 5.
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3.5 Pivotal Confidence Interval for θ

The asymptotic results obtained earlier provide us with a rigorous inferential approach

for estimating θ, R, and ψ. As an alternative approach, we introduce pivotal quantities to

obtain the confidence interval of θ. To this end, we assume that Y
(1)
j0:m

, Y
(2)
j0:m

, . . . , Y
(n)
j0:m

are

iid copies of the selective order statistic Yj0:m and introduce the following pivotal quantity

for θ

F (Y
(1)
j0:m

, Y
(2)
j0:m

, . . . , Y
(n)
j0:m

; θ) = −2
n
∑

i=1

log

(

F
Y

(i)
j0:m

(

Y
(i)
jo:m

; θ
)

)

= −2
n
∑

i=1

log

(

m
∑

j=j0

(

m

j

)

Y
(i)
j0:m

jθ

1−θ

(

1− Y
(i)
j0:m

θ
1−θ

)m−j
)

.

It can be shown that F (Y
(1)
j0:m

, Y
(2)
j0:m

, . . . , Y
(n)
j0:m

; θ) is a monotone increasing function

in θ distributed as a chi-square with n degrees-of-freedom. Hence there exists unique

solutions for the equations

F (Y
(1)
j0:m

, Y
(2)
j0:m

, . . . , Y
(n)
j0:m

; θ) = χ2
n,α

2

and

F (Y
(1)
j0:m

, Y
(2)
j0:m

, . . . , Y
(n)
j0:m

; θ) = χ2
n,1−α

2
,

where χ2
n,α

2
is the 100(α

2
) quantile of the chi-square distribution with n degrees-of-freedom.

Since

P
(

χ2
n,α

2
< F (Y

(1)
j0:m

, Y
(2)
j0:m

, . . . , Y
(n)
j0:m

; θ) < χ2
n,1−α

2

)

= 1− α

than a 100(1− α)% confidence interval of θ is

(

Lα
2

(

Y
(1)
j0:m

, Y
(2)
j0:m

, . . . , Y
(n)
j0:m

)

, U1−α
2

(

Y
(1)
j0:m

, Y
(2)
j0:m

, . . . , Y
(n)
j0:m

))

where Lα
2

(

Y
(1)
j0:m

, Y
(2)
j0:m

, . . . , Y
(n)
j0:m

)

and U1−α
2

(

Y
(1)
j0:m

, Y
(2)
j0:m

, . . . , Y
(n)
j0:m

)

are the solutions

of F
(

Y
(1)
j0:m

, Y
(2)
j0:m

, . . . , Y
(n)
j0:m

; θ
)

= χ2
n,α

2
and F

(

Y
(1)
j0:m

, Y
(2)
j0:m

, . . . , Y
(n)
j0:m

)

; θ) = χ2
n,1−α

2
,

for θ, respectively. In the follwing section, we obtain the expected length of the confidence

interval of θ, i.e., E(LF ) based on simulated data, where

LF = U1−α
2

(

Y
(1)
j0:m

, Y
(2)
j0:m

, . . . , Y
(n)
j0:m

)

− Lα
2

(

Y
(1)
j0:m

, Y
(2)
j0:m

, . . . , Y
(n)
j0:m

)

4 Simulation

As an illustration, we conduct a simulation study to evaluate the performance of our pro-

posed estimators and to assess the accuracy and efficiency of these estimators via the

bias, mean squared errors as well as the expected length of the confidence intervals. To

accomplish this, we simulate n independent samples each of size m from PFD(θ1) and

simulate the same number of samples from PFD(θ2). Accordingly, the SOS scheme will

operate as follows. Select one random sample of size m say X1, . . . , Xm from PFD(θ1)
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and sort the sample in an ascending order X1:m ≤ · · · ≤ Xm:m. Then, we choose the

j0-th order statistic, i.e., Xj0:m and repeat this process n times to obtain an SOS sample

from PFD(θ1). We follow the same strategy to generate an SOS sample from PFD(θ2)
and the new set of SOS samples will be used to obtain the MLE and MOME via numeri-

cal approximation using a rich list of mathematical software. The Mathematica software

function FindRoot is a convenient option that will be implemented to obtain our esti-

mates. The procedure is repeated N times to obtain a large number of the estimators of

interest. The following algorithm is implemented:

1. We simulate two SOS samples each of size n as explained earlier for different set

size m.

2. We use the two SOS samples to obtain the values of θ̂MLE , θ̂MOM , R̂MLE , R̂MOM ,

ψ̂MLE , and ψ̂MOM .

3. We repeant steps 1 and 2 to get a random sample of size N from the distribution of

each estimator.

4. Let θ̂ denote an estimator of the parameter in (2.1) and let θ̂(i), i = 1, 2, . . . , N ,

denote the values of the estimator θ̂ based on the i-th iteration, then the approximate

bias B(θ̂) and the mean squared errors MSE(θ̂) are calculated as follows

B(θ̂) ≈ 1

N

N
∑

i=1

(θ̂(i) − θ) and MSE (θ̂) ≈ 1

N

N
∑

i=1

(θ̂(i) − θ)2

where θ is the exact value of the parameter.

Similarly, the expected length of 95% confidence interval is calculated as follows

E(L) ≈ 1

N

N
∑

i=1

(Ûi − L̂i),

where (L̂i, Ûi) is the corresponding confidence interval estimate obtained in the i-th iter-

ation. The above algorithm has been implemented for N = 10 000, m = 1, 2, . . . , 10 and

n = 10, 20, 30, 40, 50. The results of the simulation study are presented in Tables 4–6.

The results allow us to conclude the following:

1. It is clear that the MLE is better than the MOME in terms of the bias and the MSE

values for all the parameters of interest.

2. The bias and MSE values decrease as n increases.

3. Increasing the set size m helps decreasing the MSE values.

4. The expected length of the confidence interval is getting smaller as n increases.

5. Increasing the set size m decreases the expected length of the confidence interval.

6. The expected length of the confidence interval is affected by the initial true value

of θ.
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5 Conclusion

In this article, we introduced the SOS as a potential sampling scheme to provide good es-

timators of the PFD parameter. The importance of PFD in industry, lifetime, engineering,

environment and many research areas motivated this article to search for the best sam-

pling scheme that suits such distribution compared to the traditional sampling schemes.

In this article, we derived the MLE and MOME for the parameter of the PFD. Also we

discussed the quantity R = P (X < Y ) and derived its estimator using the MLE and

MOME. Comparing two PFD parameters is important in many areas of application and

therefore we explained the estimation strategy of the ratio of the two PFD parameters. We

introduced the asymptotic results of the parameter estimators and derived the confidence

interval of the PFD parameter. The results in Table 2 motivates us to use the SOS as a

competitive scheme to carry on the estimation of the PFD parameter. Also, the simulation

results support MLE as the best choice in terms of the MSE values compared to MOME.
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