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Abstract

The paper compares 11 internal evaluation criteria for hierarchical clustering of

categorical data regarding a correct number of clusters determination. The criteria

are divided into three groups based on a way of treating the cluster quality. The

variability-based criteria use the within-cluster variability, the likelihood-based cri-

teria maximize the likelihood function, and the distance-based criteria use distances

within and between clusters. The aim is to determine which evaluation criteria per-

form well and under what conditions. Different analysis settings, such as the used

method of hierarchical clustering, and various dataset properties, such as the number

of variables or the minimal between-cluster distances, are examined. The experiment

is conducted on 810 generated datasets, where the evaluation criteria are assessed re-

garding the optimal number of clusters determination and mean absolute errors. The

results indicate that the likelihood-based BIC1 and variability-based BK criteria per-

form relatively well in determining the optimal number of clusters and that some

criteria, usually the distance-based ones, should be avoided.

1 Introduction

Cluster analysis is a multivariate statistical method that reveals an underlying structure of

data by identifying homogeneous groups (clusters) of objects. The homogeneity is de-

fined as possessing a certain relevant property by the majority of objects in the group (de

Souto et al., 2012). Under the term cluster analysis, many clustering algorithms are in-

cluded, each of them with several possible similarity measures. Different algorithms can

lead to different object assignments, and thus, a comparison of several object assignments
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using one or more evaluation criteria is often welcomed. For cluster partition evaluation,

external or internal evaluation criteria are commonly used. The external criteria, see, e.g.,

de Souto et al. (2012), are based on comparing a cluster assignment to an a priori-known

class variable. Apart from the simulation studies, where the values of a class variable are

known, they are not suitable for clustering evaluation. The internal criteria, see, e.g., Liu

et al. (2010), Milligan and Cooper (1985), Vendramin et al. (2010), use intrinsic proper-

ties of a dataset. Hence, they are more suitable for the unsupervised methods. Moreover,

the internal criteria can be further divided either to the criteria trying to determine the

optimal number of clusters or to judge the quality of a particular cluster solution, see

Arbelaitz et al. (2013). Some of the criteria were developed for both these tasks.

Studies, some of which have been mentioned in the previous paragraph, deal with

evaluation criteria for quantitative data, and the majority of them cannot be used for

categorical data. There are two main reasons for that. First, many evaluation criteria

for quantitative data use mathematical operations between the values of the raw data ma-

trix. That is not possible if the categorical values are used. Thus, the evaluation criteria

for categorical data can be only based on calculations within a dissimilarity matrix, which

is numeric also for categorical data. Second, the commonly used concepts for cluster

evaluation used in quantitative data, such as the variance to express variability, cannot be

used directly, but they have to be adjusted for their use in categorical data or appropriately

substituted by a categorical data alternative.

The clustering of categorical data is not as trustworthy as the quantitative one. The

reason is the lower variability of categories by categorical variables compared to that by

quantitative variables, which does not enable distinguishing groups in the data so pre-

cisely. However, there are many situations when clustering of purely categorical data is

necessary (medicine, psychology, marketing), and for such cases, one should have a few

reliable criteria to evaluate the obtained clusters. There is a lack of papers comparing

and assessing the evaluation criteria determined for categorical data. Although there are

many papers that use the internal evaluation criteria for categorical data, see Bontemps

and Toussile (2013), where the BIC and AIC criteria for categorical data are used, or

Řezanková et al. (2011), where the variability-based criteria are applied, we found none

which compares internal evaluation criteria for categorical data. Thus, this paper tries to

fill this gap by presenting and comparing different approaches which researchers can use

to evaluate their categorical clustering outputs.

This paper compares selected internal evaluation criteria for categorical data, which

are determined for the optimal number of clusters determination in hierarchical cluster

analysis (HCA). The criteria are evaluated on different cluster analysis settings (similar-

ity measures, linkage methods) and also on the generated dataset properties (number of

variables, categories, and clusters) regarding their ability to identify the optimal number

of clusters. This can be formulated as two main aims. The first one is to evaluate the

performance of the examined evaluation criteria regarding the correct number of clusters

determination. The second one is to determine which properties of the clustered datasets

associate with the outcomes of the examined evaluation criteria. To achieve this aim, lo-

gistic regression is used. In the experiment, 11 internal evaluation criteria are compared

and assessed. The criteria are grouped according to the principles they use: variability,

likelihood, and distance. The variability-based criteria express the cluster quality by their

low within-cluster variability, the likelihood-based criteria assess it by the low values of
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the likelihood function approximation for the categorical data, and the distance-based cri-

teria express it by the low within-cluster distances. The experiment is performed on 810

generated datasets with known cluster assignments and certain properties under control,

such as the numbers of clusters or variables.

Paper is organized as follows. Section 2 presents the examined internal evaluation

criteria for categorical data. Section 3 focuses on the selected similarity measures and

methods of HCA. Section 4 describes the dataset generation process and the experiment

settings. The results are presented in Section 5, and the outcomes of the research are

summarized in the Conclusion.

2 Internal Evaluation Criteria

Since the clusters in a dataset should be ideally distinct and their objects similar, inter-

nal evaluation criteria are usually constructed with the aim to satisfy the assumptions of

compactness and separation of the created clusters (Liu et al., 2010; Zhao et al., 2002).

Whereas the compactness measures the similarity of the objects in clusters, the separa-

tion measures distinctness between the clusters. The evaluation criteria presented in this

section measure the compactness and separation based on the principles of either a vari-

ability, a likelihood or a distance.

2.1 Evaluation Criteria Based on the Variability

The variability-based evaluation criteria are usually based on the compactness principle,

which is expressed by the low within-cluster variability of the created clusters. In this

subsection, three internal evaluation criteria based on this principle are presented, because

they performed well in (Šulc, 2016) and (Yang, 2012), namely the pseudo F index based

on the mutability (PSFM), the pseudo F index based on the entropy (PSFE) and the BK

index.

The PSFM index (Řezanková et al., 2011) is based on the within-cluster variability

expressed by the mutability (the Gini coefficient), see Gini (1912) that appears in Light

and Margolin (1971). It can be written as

PSFM (k) =
(n− k) (WCM (1)−WCM (k))

(k − 1)WCM (k)
, (2.1)

where k represents the total number of clusters and n is the number of objects in a dataset.

WCM (1) and WCM (k) represent the within-cluster variability in the whole dataset and

the k-cluster solution moving in a range from zero (no variability) to one (maximal vari-

ability). WCM (k) is computed as

WCM (k) =
k

∑

g=1

ng

n ·m

m
∑

c=1

Ggc,

where ng is the number of objects in the g-th cluster (g = 1, 2, . . . , k), m is the total

number of variables and Ggc is the mutability by the c-th variable (c = 1, 2, . . . ,m) in the
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g-th cluster expressed as

Ggc = 1−
Kc
∑

u=1

(

ngcu

ng

)2

,

where ngcu is the number of objects in the g-th cluster by the c-th variable with the u-th

category (u = 1, . . . , Kc) and Kc is the number of categories by the c-th variable.

The PSFE index (Řezanková et al., 2011) is constructed analogically to (2.1) with the

difference that instead of WCM (k), the variability WCE (k) based on the entropy is used.

WCE (k) can be expressed as

WCE (k) =
k

∑

g=1

ng

n ·m

m
∑

c=1

Hgc,

where Hgc is the entropy by the c-th variable in the g-th cluster according to the formula

Hgc = −
Kc
∑

u=1

(

ngcu

ng

ln
ngcu

ng

)

.

Both PSFM and PSFE indices indicate the optimal number of clusters by their maximal

value over several examined cluster solutions. In such a cluster solution, the highest

decrease in the within-cluster variability occurs.

The BK index (Chen and Liu, 2009) is defined as the second-order difference of the

incremental entropy of the dataset with k clusters

BK (k) = ∆2I(k) = (I(k − 1)− I(k))− (I(k)− I(k + 1)),

where I(k) is the incremental expected entropy in the k-cluster solution with the formula

I(k) = HE(k)−HE(k + 1),

where HE is the expected entropy in a dataset expressed as

HE(k) =
k

∑

g=1

ng

n

m
∑

c=1

Hgc

lnKc

.

The highest value of the index indicates the optimal number of clusters.

2.2 Evaluation Criteria Based on the Likelihood

The likelihood-based evaluation criteria maximize the likelihood of the data while penal-

izing complex models (Biem, 2003). There are two commonly used evaluation criteria

based on the likelihood for cluster quality assessment, the Bayesian information criterion

(BIC) and the Akaike information criterion (AIC). In this paper, four of their modifica-

tions for categorical data based on the mutability and the entropy are presented. All of

them indicate the optimal number of clusters by their minimal value.

The modification of the BIC index (Schwarz, 1978) for the categorical data using the

entropy was presented in the SPSS manual (SPSS, Inc., 2001) and further described in
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Bacher et al. (2004). Its calculation consists of two steps. In the first one, the modified

index for categorical data is computed, and in the second one, the outputs provided in the

first step are further refined. The first step can be written down as

BIC1 (k) = −2
k

∑

g=1

ng

m
∑

c=1

Hgc + k

m
∑

c=1

(Kc − 1) lnn.

A modification of this coefficient using the mutability with the formula

BIC2 (k) = −2
k

∑

g=1

ng

m
∑

c=1

Ggc + k
m
∑

c=1

(Kc − 1) lnn (2.2)

was introduced in Löster (2013).

The modification of the AIC index (Akaike, 1973) for the categorical data using the

entropy (SPSS, Inc., 2001; Bacher et al., 2004) can be expressed as

AIC1 (k) = −2
k

∑

g=1

ng

m
∑

c=1

Hgc + 2k
m
∑

c=1

(Kc − 1). (2.3)

Analogously to (2.2) and (2.3), a modification of the AIC index based on the mutability

was derived in the same manner. It is expressed as

AIC2 (k) = −2
k

∑

g=1

ng

m
∑

c=1

Ggc + 2k
m
∑

c=1

(Kc − 1).

For all four information criteria, the second step of the computation is the same. Ac-

cording to Bacher et al. (2004), it is defined as follows. First, a ratio R(k) is defined

as

R(k) =
d
(H)
k−1

d
(H)
k

or R(k) =
d
(G)
k−1

d
(G)
k

,

where dk represents a change of the entropy H or mutability G between a cluster solution

containing k − 1 clusters and k clusters. It is defined as a difference in entropies

d
(H)
k = H(k − 1)−H(k)

or mutabilities

d
(G)
k = G(k − 1)−G(k),

where H(k) resp. G(k) express the variability in the k-cluster solution; for instance, H(k)
is defined as:

H(k) =
k

∑

g=1

ng

m
∑

c=1

Hgc.

Thus, the dk statistic for the entropy is defined as

d
(H)
k =

k−1
∑

h=1

nh

m
∑

c=1

Hhc −

k
∑

g=1

ng

m
∑

c=1

Hgc,
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where h is the number of clusters (h = 1, 2, . . . , k − 1), and as

d
(G)
k =

k−1
∑

h=1

nh

m
∑

c=1

Ghc −
k

∑

g=1

ng

m
∑

c=1

Ggc

for criteria based on the mutability.

Next, for the two largest values of R(k), max1 and max2, a ratio r is computed:

r =
max
k≥2

1R(k)

max
k≥2

2R(k)
.

If the ratio is higher than the threshold value t = 1.15, see Bacher et al. (2004), the

number of clusters belonging to max
k≥2

1R(k) is chosen. Otherwise, the higher number of

clusters from max
k≥2

1R(k) and max
k≥2

2R(k) is chosen.

2.3 Evaluation Criteria Based on the Distances

The distance-based criteria usually utilize both principles of compactness and separation.

Satisfying the compactness principle, clusters should be of a small size, and satisfying the

separation principle, their distance to the other clusters should be sufficiently high. The

internal distance-based criteria from the NbClust R package (Charrad et al., 2014) were

selected for comparison. In this package, there are 30 criteria of this type, but 25 of them

require the raw data matrix for their computation, which makes them unsuitable for use

in categorical data. Thus, five internal evaluation criteria, which need only a dissimilarity

matrix for their computation, are used. Namely, the Dunn index, the silhouette index, the

McClain index, the c-index and the Frey index. Since the Frey index cannot be calcu-

lated in every dataset (depending on dataset properties), the remaining four criteria are

examined in this paper.

The Dunn index (DU) (Dunn, 1974) assumes that clusters in a dataset are compact and

well separated by maximizing the inter-cluster distance while minimizing the intra-cluster

distance, see Yang (2012). For the cluster solution with k clusters, it can be expressed by

the formula

DU (k) = min
l≤g≤h≤k





D(Cg, Ch)

max
l≤v≤k

diam(Cv)



 ,

where D(Cg, Ch) is the distance between the g-th and h-th clusters (expressed by a given

linkage method), and diam(Cv) is the maximal distance expressed by a given similarity

measure between two objects in the v-th cluster. The Dunn index takes values from zero

to infinity. The highest value indicates the optimal cluster solution.

The silhouette index (SI) (Rousseeuw, 1987), also known as the average silhouette

width, can be written as

SI (k) =
1

n

n
∑

i=1

b(i)− a(i)

max(a(i), b(i))
,
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where a(i) is the average dissimilarity of the i-th object to the other objects in the same

cluster, and b(i) is the minimal average dissimilarity of the i-th object to other objects

in any cluster not containing the i-th object. The silhouette index takes values from −1

to 1. The values close to one indicate well-separated clusters, the values close to minus

one suggest badly separated clusters, and values close to zero indicate that the objects in

the dataset are often located on the border of two natural clusters. The value zero also

indicates single-object clusters.

The McClain index (MC) (McClain and Rao, 1975) is defined as a ratio of the within-

cluster and the between-cluster distances

MC (k) =
Sw/nw

Sb/nb

=
Swnb

Sbnw

,

where nw is the number of pairs of objects in the same cluster, and nb is the number of

pairs of objects not belonging to the same cluster. Sw is the sum of the within-cluster

distances for nw pairs of objects, and Sb is the sum of the between-cluster distances for nb

pairs of objects. The lowest value of the index indicates the optimal number of clusters.

The c-index (CI) (Hubert and Levin, 1976) is defined as

CI =
Sw − Smin

Smax − Smin

.

The statistics nw and Sw are defined the same way as by the McClain index. Smin and

Smax are sums of nw lowest resp. highest distances across all the pairs of objects. The CI

criterion takes values from zero to one, and the optimal number of clusters is attained by

its minimum.

3 Experimental Background

This section describes steps that are necessary to set before performing a comparison

of the evaluation criteria, namely a process of data generation, a choice of similarity

measures, a selection of HCA methods, and the used assessment criteria.

3.1 Data Generation Process

The datasets for the experiment were generated with an aim to cover a wide range of pos-

sible situations that can occur. Thus, 81 different dataset settings were used, see Figure 1,

which describes the data generation process. The datasets were generated with two to

four natural clusters. Three minimal between-cluster distances2 (0.1, 0.3, 0.5) were used,

representing intersecting, partly intersecting and almost non-intersecting clusters. Next,

the datasets were generated with three different numbers of variables (4, 7, 10) covering

the typical range of clustering of categorical datasets. Based on the empirical experience,

three ranges of categories (2–4, 5–7, 8–10) were chosen representing small, medium and

2Based on the sepVal parameter in the clusterGeneration R package. For instance, sepVal = 0.1

represents the low between-cluster distance, where most of the clusters intersect, whereas sepVal = 0.5

depicts the high between-cluster distance, where the clusters do not intersect in most of datasets.
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Figure 1: Data generation scheme

large numbers of categories. The numbers of objects in generated datasets were not firmly

set; they varied from 300 to 700 cases. To ensure the robustness of the obtained results,

each dataset setting combination was replicated ten times. In total, this makes 810 gener-

ated datasets that were used for the analysis.

To perform a generation process, an R function with the name gen object, which

was developed and described in Šulc (2016), is used. The function depends on the clus-

terGeneration (Qiu and Joe, 2015) and arules (Hahsler et al., 2017) R packages. The

generation is based on a two-step approach. In the first step, a quantitative dataset with

multidimensional correlation structure reflecting the given properties (between-cluster

distances, the number of clusters, variables and the range of categories) is created. In

the second step, the dataset is categorized according to the desired number of categories

for each variable in a dataset. The categorization process creates equal-width intervals

from the quantitative values of a given variable differing in the numbers of categories.

In comparison to an equal-frequency approach, the equal-width approach creates more

natural-looking datasets, and moreover, if the categories differ in frequency counts, favor-

able properties of certain similarity measures can be used.

Figure 2 demonstrates two different dataset generation settings using the clusplot()

function in the cluster R package (Maechler et al., 2018), which displays the clusters in

the two-dimensional space, i.e., there is some loss of data variability. The displayed

datasets express 74 % resp. 73.4 % of their original variability. Both the datasets contain

three natural clusters, which differ by their minimal between-cluster distance. On the left

plot, where dist = 0.1 was used, the clusters are largely overlapping, whereas on the

right one, they are well separated.

3.2 A Choice of Similarity Measures

Five similarity measures for nominal data, namely SM, ES, IOF, LIN, VE, were chosen

for the experiment. The SM (simple matching) measure represents a standardly used

approach when determining similarity by datasets characterized by categorical variables.

In Šulc (2016) it was found out that the cluster partitions produced by this measure are the

same as the partitions created by the majority of similarity measures for binary-coded data

based on four frequencies in the 2 × 2 contingency table, such as the Jaccard coefficient

or Sokal and Sneath measures. This finding also corresponds to Todeschini et al. (2012),

where 44 similarity measures for binary-coded data were examined, and it was discovered
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Figure 2: Two generated datasets with different properties

Table 1: Calculation of the used similarity measures for categorical data

Measure Sc(xic = xjc) Sc(xic 6= xjc) S(xi,xj) D(xi,xj)

SM 1 0 Eq. (3.1) Eq. (3.3)

ES 1
K2

c

K2
c+2

Eq. (3.1) Eq. (3.4)

IOF 1 1
1+ln f(xic)·ln f(xjc)

Eq. (3.1) Eq. (3.4)

LIN 2 ln p(xic) 2 ln(p(xic) + p(xjc)) Eq. (3.2) Eq. (3.4)

VE − 1
lnKc

∑Kc

u=1 pu ln pu 0 Eq. (3.1) Eq. (3.3)

that many of them were monotonically dependent and the rest of them were near the

monotonical state (the Spearman’s Rho ranged from 0.97 to 0.99). Thus, the outputs for

the SM measure also represents these similarity measures for binary-coded data.

Next, four similarity measures for nominal data, which provided the best clusters

in Šulc (2016), were used. Each of them treats the similarity between two categories

differently. The ES measure (Eskin et al., 2002) is based on the number of categories

of the c-th variable, whereas the IOF measure (Sparck-Jones, 1972) uses the absolute

frequencies of the observed categories xic and xjc. The LIN measure (Lin, 1998) uses the

relative frequencies instead. The VE measure (Šulc, 2016) is based on the variability of

the c-th variable expressed by the entropy.

All of the measures can be applied directly to the categorical data matrix X = [xic],
where i = 1, 2, . . . , n (n is the total number of objects) and c = 1, 2, . . . ,m (m is the

total number of variables). The number of categories of the c-th variable is denoted as

Kc, absolute frequency as f , and relative frequency as p. Their overview can be found in

Table 1, where the column Sc (xic = xjc) presents the similarity computation (or just a

value) for matches of categories in the c-th variable for the i-th and j-th objects, and the

column Sc (xic 6= xjc) for mismatches of these categories.

At the second level, the total similarity S(xi,xj) between the objects xi and xj is

determined. For the majority of the examined similarity measures, it is calculated as the
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arithmetic mean

S(xi,xj) =

∑m

c=1 Sc(xic, xjc)

m
. (3.1)

For the LIN measure, the total similarity is expressed as

S(xi,xj) =

∑m

c=1 Sc(xic, xjc)
∑m

c=1(ln p(xic) + ln p(xjc))
. (3.2)

To compute a proximity matrix, which is required by the majority of software solu-

tions, it is necessary to compute dissimilarities D(xi,xj) between all pairs of objects,

which can be simply obtained from similarities. The dissimilarities are calculated in two

ways. For the similarity measures, which take values from zero to one, it is

D(xi,xj) = 1− S(xi,xj) (3.3)

and for the similarity measures which can exceed the value one, it is

D(xi,xj) =
1

S(xi,xj)
− 1 (3.4)

The S(xi,xj) and D(xi,xj) columns in Table 1 show which similarity measures use the

particular formulas.

3.3 Methods of Cluster Analysis

To determine the between-cluster distances, three methods of HCA are examined in this

paper: the complete linkage, the average linkage, and the single linkage methods. They

are commonly used in hierarchical clustering of the categorical data (see, e.g., Lu and

Liang, 2008; Morlini and Zani, 2012).

The complete linkage method treats a dissimilarity between two clusters as the dis-

similarity between two farthest objects from different clusters. This between-cluster dis-

tance usually produces compact clusters with approximately equal diameters. It can be

expressed by the formula

D(Cg, Ch) = max
xi∈Cg ,xj∈Ch

D(xi,xj).

The average linkage takes average pairwise dissimilarity between objects in two dif-

ferent clusters. The obtained clusters are often similar to the ones obtained by complete

linkage. Its formula can be expressed as

D(Cg, Ch) =
1

ngnh

∑

xi∈Cg

∑

xj∈Ch

D(xi,xj),

where ng and nh are numbers of objects in the g-th resp. h-th cluster.

The single linkage uses dissimilarity between two closest objects from two different

clusters. The formula of this algorithm can be expressed as

D(Cg, Ch) = min
xi∈Cg ,xj∈Ch

D(xi,xj).
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3.4 Evaluation Criteria Assessment

The quality of evaluation criteria will be assessed by the statistic accuracy (AC) and by

the mean absolute error (MAE). AC is defined as a percentage of the correctly determined

numbers of clusters, expressed as

AC =

∑T

t=1 I(kt, Kt)

n
· 100%,

where kt is the optimal number of clusters based on given evaluation criteria for the t-
th dataset, Kt is the known number of clusters for the t-th dataset, T is the number of

datasets, and I is the function which takes the value one in the case of kt = Kt and the

value zero otherwise.

MAE is defined as the average of the absolute differences between optimal numbers

of clusters based on a given evaluation criterion and the known numbers of clusters. Low

values indicate good stability of an evaluation criterion in its performance and vice versa.

MAE is expressed by the formula

MAE =

∑T

t=1 |kt −Kt|

n
.

4 Experiment

The experiment consists of two main parts. In the first one, the examined evaluation crite-

ria are assessed regarding their ability to determine the optimal number of clusters. In the

second part, the properties of datasets, which significantly associate with the performance

of the evaluation criteria, are identified.

The analysis was performed on 810 generated datasets whose generation process was

explained in Section 3.1. To each of these datasets, a series of HCAs for two to ten clusters

with five examined similarity measures presented in Section 3.2 were applied. The com-

plete, average and single linkage methods of HCA described in Section 3.3 were used.

The optimal numbers of clusters based on 11 evaluation criteria presented in Section 2

are then assessed by the AC and MAE statistics. In supplementary material to this paper,

a script run evaluation.R containing the whole evaluation process can be found.

4.1 Evaluation of the Optimal Number of Clusters Determination

In this subsection, the optimal number of clusters determination of the 11 examined eval-

uation criteria will be assessed regarding the used similarity measures and the inherent

properties of datasets. The assessment is based on the principle that evenly distributed

values of the AC statistic (percentages of the correctly assigned clusters) for a particular

evaluation criterion over an examined factor (e.g., similarity measure) indicate that this

factor is not associated with the evaluation criterion. Conversely, substantial differences

in the AC statistic over the factor values indicate an association between the factor and

the criterion. The detailed analysis is limited to results for the average linkage since they

provided the best results from all the examined linkage methods. The most important out-

puts for the complete and single linkages are placed in the Appendix, and they are briefly

discussed at the end of this section.



12 Šulc et al.

Table 2: AC and MAE statistics broken down by five similarity measures

AC MAE

Crit. SM ES IOF LIN VE SM ES IOF LIN VE

PSFE 37.8 37.8 37.5 36.9 38.3 1.02 0.98 0.97 1.01 0.93

PSFM 39.1 38.3 39.3 37.3 39.6 1.01 0.98 0.92 1.00 0.91

BK 46.8 40.9 45.3 46.3 44.7 0.74 0.84 0.76 0.73 0.76

BIC1 12.7 38.0 46.0 49.9 44.7 2.95 1.53 1.22 1.04 1.15

BIC2 15.3 16.5 19.9 24.0 19.5 2.37 2.56 2.51 2.18 2.44

DU 29.4 25.3 22.1 23.6 28.0 1.30 1.60 2.12 1.97 1.47

SI 42.4 33.0 41.0 42.3 39.9 1.03 1.59 0.91 1.09 1.17

CI 1.1 4.6 5.6 7.5 0.8 4.80 4.36 4.12 3.48 4.73

MC 33.1 32.5 33.8 32.7 33.1 1.02 1.06 1.05 1.05 1.01

Table 2 shows values of the AC and MAE statistics for the examined internal crite-

ria (Crit.) which were calculated as the averages over all datasets broken down by the

five used similarity measures. The criteria AIC1 and AIC2 are not displayed in the out-

put because they provided the same outputs as the more commonly used BIC1 and BIC2

criteria. When looking at the AC values, which express the percentages of correctly de-

termined clusters, it is clear that internal evaluation criteria for categorical data are not

nearly as successful as their counterparts for quantitative data, see, e.g., Vendramin et al.

(2010), where the accuracy is around 80 %. This is caused by the fact that the clusters

in the purely categorical data are much more difficult to recognize since the categorical

data have low discriminability compared to quantitative ones. Nevertheless, since nine

cluster solutions (two to ten) were investigated, a random guess is 11.1 %, and thus, all

the criteria except for CI perform better than that.

The overall best performance among the examined criteria was attained by the BK

index, whose AC was around 45 %. The other two variability-based evaluation criteria,

PSFM and PSFE, also provided stable but somewhat worse results with AC slightly under

40 %. All three variability-based criteria also have very low MAEs (mostly lower than

one); thus, there are very stable in their results. Regarding the likelihood-based evaluation

criteria, the BIC1 criterion provided good accuracy (for categorical data) but only by the

measures LIN, IOF and VE with MAEs slightly over one. The BIC2 criterion performed

poorly by all the similarity measures. This suggests that the entropy-based variants of this

type of criteria (BIC1, AIC1) should be preferred. The distance-based evaluation criteria

perform rather poorly. The only exception is the silhouette index whose AC is around

40 % (apart from the ES measure).

From Table 2 is also apparent that the MAE values are inversely proportional to the

AC scores. The criteria with better accuracy have lower mean absolute errors. The well-

performing evaluation criteria have MAEs around one or lower. Overall, the examined

evaluation criteria provided the best ACs and MAEs by the LIN measure. Therefore, this

similarity measure is going to be used by more detailed analysis and for comparison with

the reference SM measure in the rest of the paper.

Table 3 displays the average ACs of the examined evaluation criteria using the LIN
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Table 3: ACs of the examined criteria broken by the generated data properties (the LIN measure, average linkage)

number of

clusters

number of

variables

range of

categories

distance of

clusters

Crit. 2 3 4 4 7 10 2–4 5–7 8–10 0.1 0.3 0.5

PSFE 90.0 13.0 7.8 37.8 37.8 35.2 38.9 35.9 35.9 34.8 37.0 38.9

PSFM 90.0 15.2 6.7 36.7 38.5 36.7 40.0 37.0 34.8 35.2 35.9 40.7

BK 84.8 34.8 19.3 39.3 51.1 48.5 48.1 43.0 47.8 37.8 47.8 53.3

BIC1 81.9 37.8 30.0 37.4 55.6 56.7 47.0 53.7 48.9 36.3 47.0 66.3

BIC2 6.7 35.9 29.3 18.1 26.3 27.4 23.3 23.7 24.8 16.3 20.4 35.2

DU 54.1 7.0 9.6 15.2 28.5 27.0 14.8 28.5 27.4 14.8 23.7 32.2

SI 88.5 20.0 18.5 33.3 47.4 46.3 43.7 44.8 38.5 30.0 40.7 56.3

CI 8.1 10.0 4.4 8.9 6.7 7.0 14.4 3.7 4.4 4.1 9.6 8.9

MC 97.8 0.4 0.0 31.9 33.0 33.3 31.5 33.3 33.3 33.3 33.3 31.5
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measure which were averaged over all datasets and broken down by the four different

generated dataset properties described in Section 3.1. Considering the first block of the

table representing a breakdown based on the number of clusters, it is apparent that all the

criteria suffer a significant drop of performance when dealing with more than two natu-

ral clusters in a dataset. From the criteria that perform well in determining two clusters

(PSFE, PSFM, BK, BIC1, SI, MC), only two criteria (BK, BIC1) exceed 30 % accuracy

in three cluster determination, and only the BIC1 criterion reached 30 % accuracy in the

four-cluster solution. The second block reveals that some criteria (BK, BIC1, BIC2, DU,

SI) substantially improve their performance with an increasing number of variables, the

rest of the criteria do not seem to be associated with this factor positively nor negatively.

In the third block, the majority of the evaluation criteria is not affected by the number

of categories in datasets. The only exceptions are the DU criterion, whose AC is pos-

itively associated with the higher numbers of categories, and the CI criterion, which is

negatively associated with a higher number of categories. However, both these criteria

perform poorly. The last block shows that the majority of the evaluation criteria (BK,

BIC1, BIC2, DU, SI, CI) substantially improve their ACs with more distinct clusters

in datasets. By the distance 0.5 representing almost non-overlapping clusters, see, e.g.,

Figure 2, three criteria (BK, BIC1, SI) exceed 50 % accuracy.

Table 4 presents the results of the reference SM measure (and the similarity measures

for binary-coded data). Almost all the average accuracies are worse than those by the LIN

measure. The largest difference occurs by the BIC1 criterion, which was among the best

ones using the LIN measure, whereas it performs very poorly by the SM measure.

4.2 Factors Associated with the Optimal Number of Clusters Deter-

mination

As a complement to the analysis in Section 4.1, a series of logistic regression analyses

(for each evaluation criterion) was performed. The results of the average linkage with

the LIN and SM similarity measures are analyzed. In order to examine dataset properties

that are significantly associated with the optimal number of clusters determination, the

following logistic regression model was used

Y =
eβ0+β1·clu+β2·var+β3·dist+β4·cat2−4+β5·cat5−7

1 + eβ0+β1·clu+β2·var+β3·dist+β4·cat2−4+β5·cat5−7

.

By the dependent variable Y , the values higher or equal to 0.5 stand for correct de-

termination of the optimal number of clusters, and the values lower than 0.5 stand for the

unsuccessful determination. As for the independent variables, the model contains three

numeric variables, clu (the number of clusters), var (the number of variables), dist (the

minimal between-cluster distance), and two dummy variables (cat2–4, cat5–7) based on

three ranges of categories (2–4, 5–7, 8–10). The third category is a reference one.

Table 5 presents significant parameters of the logistic regression model that have ei-

ther positive (*) or negative (-) effect on the optimal number of clusters determination

of the examined evaluation criteria. In the first block, results for the LIN measure are

displayed. The number of clusters proved to be the most significant factor for almost all

of the evaluation criteria that is negatively associated with the optimal number of clus-

ters determination (except for the BIC2 criterion). The number of variables proved to
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Table 4: ACs of the examined criteria broken by the generated data properties (the SM measure, average linkage)

number of

clusters

number of

variables

range of

categories

distance of

clusters

Crit. 2 3 4 4 7 10 2–4 5–7 8–10 0.1 0.3 0.5

PSFE 93.3 11.5 8.5 41.9 35.9 35.6 36.3 41.1 35.9 39.6 35.9 37.8

PSFM 93.7 13.3 10.4 41.1 40.7 35.6 39.6 40.7 37.0 38.5 37.8 41.1

BK 91.9 32.6 15.9 48.1 48.1 44.1 44.8 46.7 48.9 43.3 43.7 53.3

BIC1 14.1 11.5 12.6 10.4 11.5 16.3 10.4 14.1 13.7 19.3 10.4 8.5

BIC2 16.7 16.7 12.6 14.4 13.7 17.8 16.3 14.8 14.8 13.3 16.7 15.9

DU 84.8 1.5 1.9 26.7 30.0 31.5 21.5 33.3 33.3 27.4 27.8 33.0

SI 91.9 19.6 15.6 45.2 43.3 38.5 39.6 41.9 45.6 34.1 40.0 53.0

CI 0.7 1.9 0.7 1.1 1.5 0.7 3.3 0.0 0.0 1.1 1.1 1.1

MC 99.3 0.0 0.0 32.6 33.3 33.3 32.6 33.3 33.3 33.3 33.3 32.6
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Table 5: Significant parameters of a logistic regression model (LIN and SM measures,

average linkage)

LIN SM

Crit. clu var cat2–4 cat5–7 dist clu var cat2–4 cat5–7 dist

PSFE --- --- ***

PSFM --- --- ***

BK --- ** *** --- ***

BIC1 --- *** ***

BIC2 *** ** ***

DU --- *** --- *** ---

SI --- *** *** ---

CI *** *

MC --- -

Note: */- p < 0.05, **/-- p < 0.01, ***/--- p < 0.001,

be the factor that positively associated with the ability to recognize the optimal number

of clusters by the majority of evaluation criteria, namely BK, BIC1, BIC2, DU, and SI.

These criteria belonged among the best ones in Section 4.1. The number of categories is

significant only by the criteria DU and CI which did not perform well. The increasing

between-cluster distance is also a significant factor which increases the success rate of the

majority of the evaluation criteria (BK, BIC1, BIC2, DU, SI, CI). By the MC criterion,

this effect is negative, but this criterion performed very poorly.

In the second block of Table 5, results for the SM measure are presented. The

variability-based measures (PSFE, PSFM, BK) are positively associated with the between-

cluster distance. However, their overall performance is not substantially better than by the

LIN measure as it was commented in Section 4.1. The majority of the evaluation crite-

ria (PSFE, PSFM, BK, DU, SI) are negatively associated with the number of clusters. It

seems that the LIN measure can reflect more properties of datasets than the SM measure

can. This is likely the reason why the examined evaluation criteria perform substantially

better when this measure was used.

General tendencies of the complete and single linkage methods do not differ substan-

tially from the tendencies presented for the average linkage. However, both the methods

are substantially less successful in determining the optimal number of clusters, especially,

in datasets with two natural clusters; see Table 6 and Table 7 in the Appendix, where the

results for the LIN measure are presented.

5 Conclusion

This paper presented a comparison of 11 internal evaluation criteria for categorical data in

hierarchical clustering regarding the optimal number of clusters determination. The eval-

uation criteria were assessed regarding their accuracy in the optimal number of clusters

determination and properties of datasets that significantly associate with the performance

of the evaluation criteria. The comparison was performed on 810 generated datasets with
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commonly used dataset properties in practice.

The examined internal evaluation criteria performed substantially worse compared to

other studies, where the internal evaluation criteria for quantitative data were examined.

The accuracy of the best ones was around 45 % while the average accuracy of the quanti-

tative data was around 80 %. One should be especially careful when clustering categorical

data that possibly consist of more than two clusters. A solution to this drawback of the

examined criteria could be to inspect one lower and one higher number of clusters than

the recommended one by some of the recommended criteria. Then, the chance to identify

the optimal number of clusters is substantially higher.

In the paper, it was found out that the ability of the evaluation criteria to determine the

optimal number of clusters depends on the method of cluster analysis used and the similar-

ity measure used. Based on the results of the performed experiment, the best performance

of the evaluation criteria was achieved using the average linkage method. From the five

used similarity measures, the evaluation criteria attained the best performance using the

LIN measure. Compared with the SM measure, which is commonly used, and its results

being the same as using the similarity measures for binary-coded data, the use of the LIN

measure increases chances to recognize three or four natural clusters in a dataset. More-

over, with an increasing number of variables or the minimal between cluster distance, it

enables to steadily improve the performance of most of the evaluation criteria, which is

not the case of the SM measure. Therefore, the use of the LIN measure is recommended.

When examining the association of the generated dataset properties on the optimal

number of clusters determination using the logistic regression, it was found out that the

increasing number of natural clusters is negatively associated with the accuracy of the

majority of the evaluation criteria. On the other hand, an increasing number of variables

and the minimal between-cluster distance positively associate with the accuracy of some

criteria. The criteria that are positively associated with both the number of variables and

the minimal between-cluster distance provide overall better results.

Among the examined evaluation criteria for categorical data clustering, the BIC1 cri-

terion is the most successful in the optimal number of clusters determination if the average

linkage with the LIN measure is used. Using complete or single linkage methods, it per-

forms worse than the BK index and similarly as PSFE and PSFM criteria. The BK index

is the most robust evaluation criterion from the examined ones. It performs consistently

over different methods of hierarchical cluster analysis and similarity measures. Thus,

the BIC1 criterion can be used if a researcher chooses the method of hierarchical cluster

analysis and a similarity measure. On the other hand, the BK index is best to use if a

researcher cannot influence the choice of clustering method and the similarity measure.
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extensive comparative study of cluster validity indices. Pattern Recognition, 46(1),

243–256.

[3] Bacher, J., Wenzig, K., and Vogler, M. (2004): SPSS TwoStep Cluster – a First

Evaluation. Nürnberg: Lehrstuhl für Soziologie.

[4] Bontemps, D. and Toussile, W. (2013): Clustering and variable selection for cate-

gorical multivariate data. Electronic Journal of Statistics, 7, 2344–2371.

[5] Biem, A. (2003): A model selection criterion for classification: application to HMM

topology optimization. In Proceeding of Seventh International Conference on Doc-

ument Analysis and Recognition, 104–109.

[6] Charrad M., Ghazzali N., Boiteau V., and Niknafs A. (2014): NbClust: An R pack-

age for determining the relevant number of clusters in a data set. Journal of Statisti-

cal Software, 61(6), 1–36.

[7] Chen, K. and Liu, L. (2009): “Best K”: Critical clustering structures in categorical

Datasets. Knowledge and Information System, 20(1), 1–33.

[8] Eskin, E., Arnold, A., Prerau, M., Portnoy, L., and Stolfo, S. V. (2002): A geometric

framework for unsupervised anomaly detection. In D. Barbará and S. Jajodia (Eds):
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