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Gumbel GARCH Model with Stock Application

Mehrnaz Mohammadpour1 Fatemeh Ziaeenejad2

Abstract

The paper proposes a new GARCH model with Gumbel conditional distribu-

tion. Several statistical properties of the model are established, like autocorrelation

function and stationarity. We consider two methods for estimating the unknown pa-

rameters of the model and investigate properties of the estimators. The performances

of the estimators are checked by a simulation study. We investigate the application

of the process using a real stock data.

1 Introduction

The generalized autoregressive conditionally heteroscedastic (GARCH) model has been

found to be useful in many economic and financial studies which captures the tendency

for volatility clustering (Bollerslev, 1986). In the classical GARCH model, normal distri-

bution has been considered as a conditional distribution which is not quite logical consid-

eration in the most financial studies.

Modeling of GARCH time series was first introduced by Bollerslev (1986) based on

the normal conditional distribution. Among the GARCH models, we cite the standardized

t-student model (Bollerslev, 1986), the normal poisson mixture model (Jorion, 1988), the

power exponential model (Baillie and Bollerslev, 1989), the normal-log normal mixture

model (Hsieh, 1988), the generalized exponential model (Nelson, 1990b), the normal

model (Nelson, 1990a, 1992), the threshold GARCH model (Glosten et al., 1993) and the

stable GARCH model (Liu and Brorsen, 1995 and Calzolari et al., 2014).

In this paper, a new GARCH model with Gumbel conditional distribution is intro-

duced. The Gumbel GARCH model is justified by the need to model extreme observa-

tions more realistically than would be possible using the standard normal GARCH. The

Gumbel model is the traditional model in extreme value analysis which has the same sta-

tus as the normal model in other applications. The major advantage of the Gumbel model

is that the distribution can be specified by location and scale parameters as in the Gaussian

case. In the following, we briefly investigate Gumbel distribution and its features.

The Gumbel distribution is referred to the distribution corresponding to extremes. The

Gumbel distribution with the location parameter α and the scale parameter γ (denoted by
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Gumbel(α, γ)) has the probability density function

fX(x) =
1

γ
exp

(

x− α

γ
− exp(

x− α

γ
)

)

.

The mean and variance of the distribution are

µ = α + νγ,

and

σ2 =
1

6
π2γ2,

where ν is Euler-Mascheroni constant. In this work, we consider α = 0.

The rest of the paper is organized as follows. In Section 2, we construct the Gum-

bel GARCH model and investigate the stationarity condition and some properties of the

model. Section 3 deals with the estimation of the model parameters by the Yule-Walker

and maximum likelihood methods. The performances of the estimators are checked by a

small Monte Carlo simulation. An application of the model for the stock data is given in

Section 4.

2 Gumbel GARCH

Let {Xt}t∈Z , Z the set of integers, be a discrete time second-order process and Ft−1 is a

σ field generated by {Xs}s<t. The process {Xt}t∈Z defines as Gumbel GARCH model of

orders p, q (Gumbel GARCH(p, q)) if

Xt|Ft−1 ∼ Gumbel(0, γt), (2.1)

and γt satisfies the model

V ar(Xt|Ft−1) =
1

6
π2γ2

t = σ2
t = α0 +

p
∑

i=1

αiX
2
t−i +

q
∑

j=1

βjσ
2
t−j, (2.2)

where α0 > 0, αi ≥ 0, βj ≥ 0, i = 1, . . . , p, j = 1, . . . , q, p ≥ 1, q ≥ 0.

The conditional probability mass function of {Xt} has the following form

f(xt|Ft−1) =
1

γt
exp(

xt

γt
) exp(− exp(−

xt

γt
)),

where

γt = (
6

π2
σ2
t )

1

2 .

The conditional mean is

E(Xt|Ft−1) = νγt = ν(
6

π2
σ2
t )

1

2 .

In Proposition 1, we establish a necessary condition on the parameters of the model to

ensure that the process is a second-order stationary process.
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Proposition 1. For a second-order stationary process {Xt}t∈Z to satisfy (2.1) and (2.2),

it is necessary that
∑p

i=1 αi(1 + ν2 6
π2 ) +

∑q

j=1 βj < 1.

Proof. Let σ2 = E(σ2
t ). Since

σ2 = E(σ2
t ) = α0 +

p
∑

i=1

αiE(X2
t−i) +

q
∑

j=1

βjE(σ2
t−j)

= α0 +

p
∑

i=1

αi(1 + ν2 6

π2
)σ2 +

q
∑

j=1

βjσ
2,

we obtain

σ2 =
α0

(

1−
∑p

i=1 αi(1 + ν2 6
π2 )−

∑q

j=1 βj

) . (2.3)

In (2.3), the parameters must necessarily satisfy the condition

1−

p
∑

i=1

αi(1 + ν2 6

π2
)−

q
∑

j=1

βj > 0,

which completes the proof.

The following theorem presents a necessary and sufficient condition for the second

order stationarity of the model. For the simplicity of notation, we assume that p ≥ q.

Theorem 1. A necessary and sufficient condition for the process {Xt} to be second-order

stationary is that all roots of

1− Aα0 −

q
∑

i=1

(Aαi + βi)z
i −

p
∑

i=q+1

Aαiz
i = 0, (2.4)

lie inside the unit circle, where A = (1 + ν26/π2).

Proof. Let γi,t = E(XtXt−i), i = 1, 2, . . . , p. The conditional second moment is obtained

as

E(X2
t |Ft−1) = V ar(Xt|Ft−1) + E2(Xt|Ft−1)

= σ2
t + ν2(6/π2σ2

t )

= Aσ2
t .

Then

γ0,t = E(X2
t ) = E(E(X2

t |Ft−1) = E(Aσ2
t )

= A

(

α0 +

p
∑

i=1

αiE(X2
t−i) +

q
∑

j=1

βjE(σ2
t−j)

)

= Aα0 +

p
∑

i=1

Aαiγ0,t−i +

q
∑

j=1

βjγ0,t−j

= Aα0 +

q
∑

i=1

(Aαi + βi)γ0,t−i +

p
∑

i=q+1

Aαiγ0,t−i.
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The necessary and sufficient condition for a non-homogeneous difference equation

to have a stable solution is that all roots z1, . . . , zp of eqn (2.4) lie inside the unit circle,

(Goldberg, 1958).

The following theorem gives the autocorrelation function (ACF) of {X2
t } which is

used for Yule-Walker estimation.

Theorem 2. Suppose that {Xt} following the Gumbel GARCH(p, q) model is second-

order stationary. Then γ2
x(k) := Cov(X2

t , X
2
t−k) and γ2

σ2(k) := Cov(σ2
t , σ

2
t−k) satisfy the

following equations

γ2
x(k) =

p
∑

i=1

(1 + ν26/π2)αiγ
2
x(|i− k|)

+

min(k−1,q)
∑

j=1

βjγ
2
x(k − j) +

q
∑

j=1

(1 + ν26/π2)2βjγ
2
σ2(|k − j|), k ≥ 1, (2.5)

and

γ2
σ2(k) =

min(k,p)
∑

i=1

(1 + ν26/π2)αiγ
2
σ2(|i− k|)

+

p
∑

i=k+1

αi/(1 + ν26/π2)γ2
x(k − j) +

q
∑

j=1

βjγ
2
σ2(|k − j|), k ≥ 0. (2.6)

Proof. See Appendix A for details.

Corollary 1. Suppose that {Xt} following the Gumbel ARCH(p) model is second-order

stationary. Then the autocovariance function γ2
x(·) satisfies the following equation

γ2
x(k) =

p
∑

i=1

(1 + ν26/π2)αiγ
2
x(|k − i|), k ≥ 1. (2.7)

The equations of Corollary 1 are obviously nearly identical to the Yule Walker equa-

tions of the standard AR(p) model. As a consequence, the model of order p can be iden-

tified with the help of the partial autocorrelation function (PACF).

3 Estimation and Simulation Comparison

In this section, we will investigate two methods for parameter estimation of the Gumbel

GARCH(p, q) model based on a realization X1, . . . , Xn of the process. These estimators

are compared via Monte Carlo simulations in terms of their means and standard devia-

tions.
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3.1 Yule-Walker Estimator

Let γ̂2
x (k) =

1
n

n−k
∑

t=1

(

X2
t −X2

)(

X2
t+k −X2

)

, 0 ≤ k < n, be the sample autocovariance

function of {X2
t }, where X2 = 1

n

n
∑

t=1

X2
t is the sample mean. The Yule-Walker (YW)

estimators of the model are obtained by substituting the sample γ2
x (k) in eqn (2.7) and

solving them.

Example 1. Consider the Gumbel ARCH (2) as

Xt|Ft−1 ∼ Gumbel(0, γt),

V ar(Xt|Ft−1) = (π2/6)γ2
t = σ2

t = α0 +
2
∑

i=1

αiX
2
t−i.

The explicit YW estimators of α1 and α2 are

α̂1 =
ρ2x(1)(1− ρ2x(2))

(1− ρ2x(1))(1 + ν26/π2)
,

α̂2 =
ρ2x(2)− (ρ2x(1))

2

(1− (ρ2x(1))
2)2(1 + ν26/π2)

where ρ2x(k) =
γ2
x
(k)

γ2
x
(0)

. Also note that α0 can be estimated from eqn (2.3).

3.2 Maximum Likelihood

Here we derive the maximum likelihood estimator (MLE) of the unknown parameter θ
where θ = [α0, α1, . . . , αp, β1, β2, . . . , βq]. The MLE of the parameter is obtained by

maximization of the conditional log-likelihood function

`(θ) =
n
∑

t=1

`t(θ) =
n
∑

t=1

[−logγt +
Xt

γt
− exp(−

Xt

γt
)],

where

γt = (
6

π2
σ2
t )

1

2 ,

and

σ2
t = α0 +

p
∑

i=1

αiX
2
t−i +

q
∑

j=1

βjσ
2
t−j.

Solving the system of equations
∂`(θ)
∂θ

= 0, the MLE of θ is obtained. This can be done

by using standard nonlinear maximization procedures which may be found in most of the

statistical and data analysis packages.
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3.3 Simulation

Here we have carried out two simulation studies. In the first study, we compare the two

method of estimation. To examine the performances of the YW and ML estimators, a

Monte Carlo simulation is conducted for different sample sizes n = 100, 300, 500 with

m = 200 replications for models Gumbel ARCH(1), Gumbel ARCH(2) and Gumbel

GARCH(1,1) for true parameter values:

• Gumbel ARCH(1): (α0, α1) = A1(3, 0.5); A2(4, 0.3);

• Gumbel ARCH(2): (α0, α1, α2) = B1(3, 0.4, 0.2); B2(4, 0.3, 0.3);

• Gumbel GARCH(1,1): (α0, α1, β1) = C1(2, 0.4, 0.3); C2(4, 0.3, 0.3).

For the maximization of the log-likelihood function, the YW estimates were used as

the initial values. Table 1 provides the mean and mean absolute deviation error (MADE)

of the estimators for different values of the parameters and different sample sizes. As

for the stationarity discussed,
∑p

i=1 αi(1 + ν2 6
π2 ) +

∑q

j=1 βj in the models are all less

than one and the stationary condition holds for the fitted models. It can be seen that as

the sample size increases, the estimates seem to converge to the true parameter values.

Two estimation methods seem to perform reasonably well but the MLEs provide better

performance, which was expected.

We compare the two models with respect to their general properties and coherent

forecasting ability. To achieve this, we have simulated 200 series, each of size 100 from

Gumbel GARCH(1,1) process with three sets of parameter values viz.; (a) α0 = 2, α1 =
0.2, β1 = 0.3, (b) α0 = 3, α1 = 0.3, β1 = 0.4 and (c) α0 = 3, α1 = 0.4, β1 =
0.6. From Table 2 it can be observed that the values of the performance measures mean

square prediction error (MSPE) for the Gumbel GARCH(1,1) model are relatively lower,

supporting the fact that if the actual process is Gumbel GARCH(1,1), then it gives a better

fit (less prediction error) than classic GARCH(1,1). It can be also seen that, as k in k-step

ahead forecasts increases, the values of the measures increases, indicating that the error

in forecast increases as lag increases.

4 Real Example

In this section, we discuss some possible applications of the Gumbel GARCH model for

a real time series of weekly data of Tehran Price Index (TEPIX). The data consist of 152

observation from 11 Nov. 2012 to 9 Sep. 2015. The data are obtained from the website

of http://www.tse.ir. The sample paths, difference of log data, autocorrelation functions

(ACFs) and partial autocorrelation functions (PACFs) of the difference log series are dis-

played in Figure 1. For selecting the model for the data series, we compare the classi-

cal ARCH(1), ARCH(2), ARCH(3), GARCH(1,1), GARCH(1,2), GARCH(1,3), Gum-

bel ARCH(1), Gumbel ARCH(2), Gumbel ARCH(3), Gumbel GARCH(1,1), Gumbel

GARCH(1,2), Gumbel GARCH(1,3) models. For each model, based on MLEs we pro-

vide some well-known measures of goodness-of-fit statistics to check the adequacy of a

time series model among a finite set of models. These statistics are the Akaike informa-

tion criterion (AIC) and Bayesian information criterion (BIC). The obtained results, for
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the data series, are shown in Table 3. As it can be seen from this table, the values of

the goodness-of-fit statistics are the smallest for the Gumbel GARCH(1,3) model. The

Pearson residual for Gumbel GARCH(1,3) is defined by

Xn − E(Xn|Fn−1)
√

V ar(Xn|Fn−1)

where

E(Xn|Fn−1) = νγ̂n; V ar(Xn|Fn−1) =
1

6
π2γ̂2

n.

Figure 1: (a) Sample path of the time series, (b) Difference log time series, (c) ACF, (d)

PACF

The residual analysis is shown in Figure 2. Figure 2 shows density and normal Q-Q

plot for Pearson residuals which appear to be almost normally distributed. The Ljung-Box



66 Mohammadpour and Ziaeenejad

statistic is 15.0825 by 15 lags (χ2
0.05(14) = 23.6848). The results show that the residuals

are independent.

Figure 2: (a) ACF, (b) Q-Q plot, (c) density of Residuals

5 Conclusion

This article discusses the financial time series modeling with potential extreme obser-

vations. The Gumbel GARCH model, a generalization of the classic GARCH model is

proposed to modeling. Stationarity conditions are given as well as the autocorrelation

function. For estimation, we present two approaches with the focus on the maximum

likelihood method. Simulation results show that two estimation methods are sufficiently

accurate but the MLEs provide better performance. Results on the real stock data indicate

that the proposed method performs better than the classic GARCH model.
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Table 1: Mean (± MADE) of the estimators for different values of the parameters

Model n Method α0 α1 α2 or β1

∑

i=1(1 + ν2 6
π2 )αi + β1

A1 100 YW 3.2348± 0.3991 0.4431± 0.1284
ML 3.1525± 0.3580 0.4773± 0.1209 0.2324

300 YW 3.1866± 0.3272 0.4593± 0.1075
ML 3.1540± 0.2660 0.4834± 0.0858 0.2368

500 YW 3.1475± 0.2621 0.4741± 0.0863
ML 3.0663± 0.2171 0.5012± 0.0512 0.2455

A2 100 YW 5.1435± 1.1690 0.2524± 0.0799
ML 4.6023± 0.8525 0.2660± 0.0587 0.1303

300 YW 4.7894± 0.8179 0.2721± 0.0612
ML 4.3769± 0.6936 0.2811± 0.0551 0.1377

500 YW 4.4469± 0.4858 0.2920± 0.0468
ML 4.1923± 0.4759 0.2964± 0.0436 0.1452

B1 100 YW 2.5347± 0.6879 0.3324± 0.1212 0.1438± 0.1233
ML 2.8489± 0.5592 0.3756± 0.1225 0.1772± 0.1020 0.3612

300 YW 2.6893± 0.5626 0.3466± 0.1028 0.1621± 0.0961
ML 2.9035± 0.4659 0.3723± 0.0838 0.1893± 0.0768 0.3717

500 YW 2.8767± 0.4542 0.3595± 0.0865 0.1794± 0.0740
ML 3.0288± 0.3821 0.3902± 0.0753 0.1988± 0.0598 0.3899

B2 100 YW 5.6798± 2.1657 0.2731± 0.1643 0.2432± 0.1905
ML 4.8586± 1.6984 0.2762± 0.1593 0.2463± 0.1732 0.3816

300 YW 5.0924± 1.6661 0.2794± 0.1528 0.2653± 0.1716
ML 4.9401± 1.5831 0.2804± 0.1468 0.2695± 0.1690 0.4068

500 YW 4.5712± 1.1649 0.2812± 0.1417 0.2851± 0.1563
ML 4.4499± 1.1028 0.2827± 0.1377 0.2876± 0.1539 0.4261

C1 100 YW 3.5619± 1.6097 0.2761± 0.0634 0.1579± 0.2611

continued . . .
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Model n Method α0 α1 α2 or β1

∑

i=1(1 + ν2 6
π2 )αi + β1

ML 2.4378± 0.3580 0.3673± 0.0437 0.2379± 0.1842 0.4178
300 YW 2.8406± 0.9385 0.3022± 0.0420 0.2029± 0.2138

ML 2.2283± 0.4981 0.3767± 0.0208 0.2652± 0.1860 0.4498
500 YW 2.2464± 0.3405 0.3243± 0.0299 0.2571± 0.1746

ML 2.1563± 0.1184 0.3854± 0.0184 0.2983± 0.1545 0.4887
C2 100 YW 5.4571± 2.7082 0.2785± 0.1701 0.1376± 0.2537

ML 4.4554± 2.2111 0.2898± 0.1711 0.2617± 0.1796 0.4037
300 YW 4.9820± 2.2210 0.2876± 0.1518 0.1907± 0.1911

ML 4.4697± 2.0628 0.2967± 0.1546 0.2778± 0.1859 0.4231
500 YW 4.5606± 1.7099 0.2898± 0.1346 0.2327± 0.1339

ML 4.0485± 1.5657 0.2904± 0.1365 0.2978± 0.1298 0.4400
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Table 2: MSPE of the data generated from Gumbel GARCH(1,1) model for k-step ahead forecasts

k GARCH(1,1) Gumbel GARCH(1,1) GARCH(1,1) Gumbel GARCH(1,1) GARCH(1,1) Gumbel GARCH(1,1)

(α0, α1, β1) = (2, 0.2, 0.3) (α0, α1, β1) = (3, 0.3, 0.4) (α0, α1, β1) = (3, 0.4, 0.6)

1 0.84 0.69 0.76 0.67 0.72 0.67
2 0.93 0.82 0.90 0.83 0.81 0.77
3 1.04 0.94 1.01 0.90 0.93 0.86
4 1.10 0.97 1.12 1.03 1.07 1.01
5 1.13 1.02 1.18 1.08 1.20 1.10

Table 3: Estimated parameters, AIC and BIC for the TEPIX time series

Model α0 α1 α2 α3 β1 β2 β3 AIC BIC

ARCH(1) 0.4362 0.3748 350.6 356.6
ARCH(2) 0.4213 0.3106 0.2219 339.4 345.5
ARCH(3) 0.4147 0.3216 0.3105 0.2221 335.6 340.7
GARCH(1,1) 0.3927 0.2520 0.1984 350.9 361.3
GARCH(1,2) 0.3524 0.2212 0.1874 0.1523 351.5 363.9
GARCH(1,3) 0.3021 0.1980 0.1722 0.1281 0.1125 347.7 352.2
Gumbel ARCH(1) 0.4993 0.3216 318.2 322.7
Gumbel ARCH(2) 0.4325 0.2992 0.2579 315.3 319.7
Gumbel ARCH(3) 0.4091 0.2537 0.2280 0.1852 312.4 317.1
Gumbel GARCH(1,1) 0.3423 0.2758 0.1980 306.4 314.9
Gumbel GARCH(1,2) 0.3219 0.2227 0.1825 0.1653 304.7 311.5
Gumbel GARCH(1,3) 0.3051 0.2113 0.1812 0.1521 0.1210 303.2 307.4
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A Appendix

Let It be the σ-field generated by {σ2
t , σ

2
t−1, ...}, then we have

E(X2
t |Ft−1, It) = E(X2

t |Ft−1) = σ2
t (1 + ν26/π2),

and

σ2 := E(X2
t ) = E(E(X2

t |Ft−1)) = E(σ2
t (1 + ν26/π2)).
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For k ≥ 0, since

Cov(X2
t − σ2

t (1 + ν26/π2), σ2
t−k(1 + ν26/π2))

= E[(X2
t − σ2

t (1 + ν26/π2))(σ2
t−k(1 + ν26/π2)− σ2)]

= E[(σ2
t−k(1 + ν26/π2)− σ2)E(X2

t − σ2
t (1 + ν26/π2)|It)]

= E[(σ2
t−k(1 + ν26/π2)− σ2)E(E(X2

t |Ft−1, It)|It − σ2
t (1 + ν26/π2))]

= E(σ2
t−k(1 + ν26/π2)− σ2)E(σ2

t (1 + ν26/π2)|It − σ2
t (1 + ν26/π2))

= 0,

we obtain

Cov(X2
t , σ

2
t−k(1 + ν26/π2)) = Cov(σ2

t (1 + ν26/π2), σ2
t−k(1 + ν26/π2)).

Similarly for k < 0, since

Cov(X2
t , X

2
t−k − σ2

t−k(1 + ν26/π2))

= E[(X2
t − σ2)(X2

t−k − σ2
t−k(1 + ν26/π2)))]

= E[(X2
t − σ2)E((X2

t−k − σ2
t−k(1 + ν26/π2))|Ft−k−1)]

= E[(X2
t − σ2)(σ2

t−k(1 + ν26/π2)− E(σ2
t−k(1 + ν26/π2)|Ft−k−1)]

= 0,

we have

Cov(X2
t , σ

2
t−k(1 + ν26/π2)) = Cov(X2

t , X
2
t−k).

Therefore

Cov(X2
t , σ

2
t−k(1 + ν26/π2)) =

{

(1 + ν26/π2)2Cov(σ2
t , σ

2
t−k), k ≥ 0

Cov(X2
t , X

2
t−k), k < 0

.

Let us now derive γ2
σ2(k). For k ≥ 0, since

γ2
σ2(k) = Cov(σ2

t , σ
2
t−k) =

p
∑

i=1

Cov(X2
t−i, σ

2
t−k) +

q
∑

j=1

βjCov(σ2
t−j, σ

2
t−k)

=

p
∑

i=1

(1 + ν26/π2)/(1 + ν26/π2)αiCov(X2
t−i, σ

2
t−k) +

q
∑

j=1

βjCov(σ2
t−j, σ

2
t−k)

=

p
∑

i=1

αi/(1 + ν26/π2)Cov(X2
t−i, (1 + ν26/π2)σ2

t−k) +

p
∑

i=1

βjCov(σ2
t−j, σ

2
t−k),

we have

γ2
σ2(k) =

min(k,p)
∑

i=1

(1 + ν26/π2)αiCov(σ2
t−i, σ

2
t−k)+

p
∑

i=1

αi/(1 + ν26/π2)Cov(X2
t−i, X

2
t−k) +

q
∑

j=1

βjCov(σ2
t−j, σ

2
t−k).
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For the case, when k ≥ 1, we obtain γ2
x(k) as

γ2
x(k) = Cov(X2

t , X
2
t−k) = E(X2

t , X
2
t−k) = E(E(X2

t , X
2
t−k)|Ft−1)

= E(E(X2
t |Ft−1, X

2
t−k)) = E((1 + ν26/π2)σ2

t , X
2
t−k)

= (1 + ν26/π2)E(α0 +

p
∑

i=1

αiX
2
t−i +

q
∑

j=1

βjσ
2
t−j, X

2
t−k)

= (1 + ν26/π2)(

p
∑

i=1

αiE(X2
t−i, X

2
t−k) +

q
∑

j=1

βjE(σ2
t−j, X

2
t−k))

=

p
∑

i=1

(1 + ν26/π2αiCov(X2
t−i, X

2
t−j) +

min(k−1),q
∑

j=1

βjCov(X2
t−j, X

2
t−k)

+

q
∑

j=1

(1 + ν26/π2)2βjCov(σ2
t−j, σ

2
t−k)). �
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