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Abstract

Parameter coefficients from non-linear models are inherently difficult to interpret,

and scholars frequently opt for computing and comparing predicted probabilities for

variables of interest. In an influential article, Hanmer and Ozan Kalkan (2013) dis-

cuss the two most common approaches, the average case respectively observed val-

ues approach, and make a strong case for the latter. In this paper, I propose a further

refinement of the observed values approach for the purpose of computing predicted

probability changes. This refinement concerns the use of counterfactual values for

the independent variable of interest. I demonstrate that accounting for non-linearities

with regards to the variable of interest is important to avoid estimation biases. I also

discuss the implications of this insight for estimating average treatment effects from

observational data.

1 Introduction

Parameter coefficients from non-linear models, as they are commonly used for categor-

ical dependent variables, are inherently difficult to interpret. Therefore, it is preferable

to opt for computing and comparing predicted probabilities for different values of inde-

pendent variables (Brambor et al., 2006; Gelman and Pardoe, 2007; Berry et al., 2010).2

In an influential article, Hanmer and Ozan Kalkan (2013) discuss the two most common

approaches to computing such probabilities, the average case approach (ACA) respec-

tively observed values approach (OVA), and make a strong case for the latter.3 In essence,

predicted probabilities for average cases are not representative for the population at large

as they ignore the distribution of covariates, which leads to biased predictions based on

models with non-linear functional forms (e.g. logit, probit, poisson). They also present

evidence in favor of their claim that the ACA exaggerates probability changes attributed

to any independent variable.

1Bard College Berlin, Berlin, Germany; b.becker@berlin.bard.edu
2It can be argued that odds ratios constitute a preferable way to interpret probability models (see, for

example, Liao (1994)). However, I focus on predicted probabilities as their use is more common in the

current literature.
3According to Google Scholar the article has been cited 307 times, 32 of which are publications in the

AJPS, APSR, BJPS, CPS, JOP, and PSRM (as of March 13, 2018).
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The main uses of predicted probabilities for limited dependent variables are three.

First, interest in the predicted probabilities themselves, either at a specific value of an

independent variables or for a range of values (e.g. effect plots). Second, an interest

in predicted probability changes, which compares predicted probabilities at two different

values of an independent variable, to give an indication of effect sizes or treatment ef-

fects. Or third, combining the first two uses by computing predicted probabilities changes

for one independent variable conditional on values of another independent variable (e.g.

marginal effect plots). In this paper, I focus on the computation of predicted probability

changes–which are central to the two latter uses just mentioned–for logit models with

binary dependent variables, but the results generalize to other non-linear models.

Specifically, I propose a refinement of the observed values approach as formalized by

Hanmer and Ozan Kalkan (2013). This refinement remains true to the authors’ original

motivation, which is to compute representative probability changes by accounting for the

distribution of independent variables. However, in addition to considering the distribu-

tion of covariates, the refinement suggested here also accounts for the distribution of the

independent variable for which the probability changes are computed. Furthermore, I

show how the same refinement can be applied to estimates of (average) treatment effects

based on observational data. I also present results from a simulation analysis to show how

the refinement I suggest avoids inducing biases in the estimation of predicted probability

changes.

2 Predicted Probabilities for Non-Linear Models

2.1 The Observed Values Approach (OVA)

The logic underlying models with binary dependent variables is that the distribution of

observed outcomes Y is a chance event, and that each observation i has an unobserved

probability of either outcome, i.e. Pr(1) = pi and Pr(0) = 1 − pi. The full vector of

probabilities p is linked to a matrix of independent variables X through a function G that

specifies intercept α and a vector of weights β, G(p) = α + Xβ. The most common

functional forms are the logit and probit, and α and β are estimated such that the resulting

probabilities p maximize the joint likelihood of the model having generated the observed

outcomes Y (Long, 1997). In the following, I focus on the logit model only. The focus on

logit models is purely for exemplary purposes and due to their common usage and relative

ease of use.4 Most importantly, the issues raised in the following apply to all commonly

used models with non-linear link-functions.

The interest here lies in predicted probability changes given a discrete change in an

independent variable xk from c to d. Under a logit model, predicted probabilities can

be produced for any observation (or counterfactual case) by applying the inverse logit

function F, p = F(α, β, x) = 1
1+e−(α+xβ)

. It is possible to separate the contribution of the

independent variable xk from all other independent variables X
−k, such that the inverse

logit is re-expressed as 1

1+e−(α+X
−kβ

−k+xkβk )
. The predicted probability change can then be

computed as follows,

4It is often noted that logit and probit models do not yield substantively different results.
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∆pi =
1

1 + e−(α+Xi−kβ−k+dβk)
− 1

1 + e−(α+Xi−kβ−k+cβk)
. (2.1)

On the right-hand side, all values but covariates X
−k have already been set. Here the

difference between the ACA and the OVA becomes most clear. Under the ACA, X
−k

would be filled in by X̄
−k, i.e. modal, median, and mean values for each respective

variable. By contrast, for the OVA, we compute ∆pi for every observation i by filling in

the respective X
−k values, and the average over the result. As such, predicted probability

changes under OVA are better expressed as,

∆pOV A =
1

n

n∑

i=1

∆pi, (2.2)

where n indicates the number of observations, and X
−k constitutes a matrix with one row

for each observation, and one column for each independent variables (excluding the kth).

Both approaches, due to the non-linearity induced by the (inverse) logit function, lead

virtually never to the same result. As elaborated by Hanmer and Ozan Kalkan (2013)

the reason for this is that the effect of βk is not constant but depends on an observation’s

values for the independent variables. This can be seen when taking the first derivative of

the inverse link function F with respect to xk, which indicates the marginal effect. For the

logit model it is (following the expanded formulation of F),

∂p

∂xk

= βk
eα+X

−kβ−k+xkβk

(1 + eα+X
−kβ−k+xkβk)2

. (2.3)

As explained above, ACA and OVA differ in their choice of X
−k for which the pre-

dicted probabilities are computed. As the first derivative of the average case usually does

not have the same value as the average derivative of all cases, they lead to different results.

As mentioned before, this concern is not limited to logit models but similarly applies to

other non-linear models, where generally, ∂p
∂xk

= f(xβ)βk.

In sum, Hanmer and Ozan Kalkan (2013) make a convincing case for the OVA. In

particular, they show that accounting for the observed variability in the independent vari-

ables is important to arrive at representative results. However, the authors also warn, “it

is crucial to note that the observed-value approach is not foolproof. Though our focus

is on setting the variables not being manipulated, setting the values of the variable be-

ing manipulated is at least as important” (Hanmer and Ozan Kalkan, 2013, p. 269). Put

differently, the authors do not elaborate the choice of counterfactuals for the independent

variable of interest, xk. This is the point of the departure for the present paper.

2.2 Problem: Choosing Counterfactuals

In explicating the OVA, Hanmer and Ozan Kalkan (2013) do not focus on the choice of

counterfactual values for the independent variable of interest, xk, i.e. the variable whose

values are adjusted to compute predicted probability changes. However, this choice is

important since, like the choice of X
−k, it affects the value of the first derivative of F and

thus the quantities we are interested in, i.e. predicted probability changes. A common

approach in the literature is to use fixed values as counterfactual values (e.g. King and
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Zeng, 2006; Aronow and Samii, 2016). I show below that this approach undesirably

distorts computations of predicted probability changes, and that counterfactuals for the

OVA are better chosen with respect to each observation’s value of xk. As such, what is

offered here is a refinement of the original OVA for the purpose of computing predicted

probability changes.

Table 1: Common counterfactuals

Counterfactual c d

Interquartile difference 1st quartile of xk 3rd quartile of xk

First differences a (e.g. 0) a+1 (e.g. 1)

Standard deviation 0 0 + SD(xk)

Full range min(xk) max(xk)

Under the OVA, predicted probability changes are computed based on equation 2.2.

Some quantities are given. α and β have been determined by a previously estimated logit

model. X
−k contains the observed values for the corresponding variables. What is left

are the counterfactual values of c and d which replace the observed values of xk. Look-

ing at the empirical literature, counterfactuals that are frequently chosen correspond to

interquartile differences, first differences, standard deviations, or the full range of the in-

dependent variable of interest. Table 1 shows the exact values for each choice of counter-

factual. Having chosen a counterfactual, and following the standard OVA, the respective

values are plugged into equation 2.2, and the result indicates the predicted probability

change in the dependent variable.

As discussed above, the main advantage of OVA over ACA is that it does not replace

X
−k with values of one representative case only, X̄

−k, but takes into account the distri-

bution of all X
−k. As such, it accounts for the distribution of covariates and how they

condition the marginal effect of xk, ∂p
∂xk

. However, the same concern also applies to xk

itself (Gelman and Pardoe, 2007). The counterfactual value, xc, by which xk is replaced

affects the distribution of marginal effects. This is not a concern if our interest lies in the

marginal effect at a specific counterfactual value. However, if the interest is in predicted

probability changes that are representative of the population, it is. Replacing all xk values

with a single xc value ignores variation in xk as well as covariation of xk with other inde-

pendent variables (X
−k), and the resulting variation in ∂p

∂xk
. The consequences of this for

predicted probability changes depend on whether the replacement shifts observations–on

average–towards higher or lower marginal effects.

Importantly not all observation are affected by these “shifts” in the same way. In

particular, as shifts s are the difference between the observed value and the counter-

factual value, xc − xk, they depend on the observed value itself, and their distribution,

S, is unknown. Thus, when single counterfactual values are used, predicted probability

changes are effectively determined according to the following equation (as s = xc − xk,

xc = s+ xk),

∆pOV A =
1

n

n∑

i=1

( 1

1 + e−(α+X
−kβ−k+(xk+sd)βk)

− 1

1 + e−(α+X
−kβ−k+(xk+sc)βk)

)
, (2.4)
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where sc and sd are the shifts induced by the respective counterfactual values, c and d.

As the distribution of the shifts, and thus its consequences for computations of predicted

probability changes, are unkown, this appears to be an undesirable set-up. Fortunately,

there is a rather straightforward way to avoid such shifts.

2.3 Solution: Location-Sensitive OVA

As outlined in the previous section, counterfactuals are most commonly computed based

on fixed values. This practice is likely a consequence of counterfactual computations with

coefficients from linear models, where the choice of fixed values and the shifts it induces

does not affect results (due to the constance of marginal effects). For non-linear models,

such shifts should be avoided and this can be done by setting counterfactual relative to

observed values. Say a predicted probability change is to be computed for a change in

xk from c to d. Instead of replacing all xk by the fixed values (as above), counterfactuals

are computed for each observation with respect to its observed xk. This can be done by

computing the difference between c and d, and setting each observation’s counterfactuals,

ci and di, to xk−(d−c)/2 and xk+(d−c)/2 respectively. Employing these counterfactuals

that are sensitive to each observation’s xk value leads to the following reformulation of

the equation for predicted probability changes,

∆plOV A =
1

n

n∑

i=1

(
1

1 + e−(α+X
−kβ−k+(xk+(d−c)/2)βk)

− 1

1 + e−(α+X
−kβ−k+(xk−(d−c)/2)βk)

)
.

(2.5)

The location-sensitive OVA (lOVA) for predicted probability changes thus considers

the same counterfactual change in xk counterfactual range for all observations, d − c =
di−ci ∀i. Furthermore, it does so relative to the originally observed value and thus avoids

unnecessary distortion due to shifts induced by the usage of fixed counterfactuals. Figure

1 illustrates the difference between both approaches. In the next section, I show that such

a correction can have substantial impact on assessment of predicted probability changes.

3 Simulation Analysis

In the following simulation analysis I explore differences between OVA and lOVA for

computing predicted probability changes using different counterfactuals. In particular,

I discuss differences for counterfactuals based on interquartile differences, first differ-

ences, and standard deviations. Counterfactuals based on the full range of the independent

variable are excluded here as such predictions are highly sensitive to outliers, and often

highly dependent on model specification (King and Zeng, 2006); they should therefore be

avoided (unless researchers are interested in the outliers themselves).5

5The analysis is implemented with the R software environment. The mvtnorm package is used to gen-

erate population data. Replication files are provided through the journal website.
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Figure 1: Predicted Probability Changes: OVA vs lOVA (illustration).The black dot corre-

sponds to an hypothetical observed value. Here the shift induced by OVA leads to a higher

predicted probability change (for a hypothetical counterfactual change in xk from c to d) than

under lOVA.

3.1 Set-Up

To assess the implications of using OVA with fixed or relative counterfactuals for assess-

ments of predicted probability changes, I simulate population data under different realistic

parameter specifications (scenarios), estimate logit models based an a random sample of

the simulated population data, and then compare results based on the standard OVA and

the lOVA.6 For each scenario, I simulate 250 populations with 1 000 000 observations.

From each population, I draw a random sample of 1000 observations. Simulating both

populations and corresponding samples has the advantage that population parameters can

be computed directly and used to evaluate sample estimates. The data-generating process

(DGP) of the population data is as follows,

y ∼ B(1, π),

π = F(α + β1x1 + .5x2 + 2x3).

The DGP is based on the logit model, where the binary dependent variable, y, is

linked to the independent variables through the Binomial function, B, and the inverse

logit function, F. π corresponds to each observation’s probability of y equaling 1 (the

probability of y equaling 0 is 1 − π). There are three independent variables, x1, x2, and

x3, are drawn from a multivariate normal distribution, where the standard deviations of

x2 and x3 are set to 1, and the correlation coefficients ρ(x1, x3) and ρ(x2, x3) are set to

0. The remaining parameters are altered under the different scenarios, i.e. the parameter

6This set-up is similar to the one employed by Hanmer and Ozan Kalkan (2013).
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coefficient β1 takes values .5, 1, and 2, the standard deviation σ1 of x1 takes values .5, 1,

and 2, the correlation coefficient ρ(x1, x2) takes either 0 or .5, and the intercept α is either

0 or 1. Simulations are run for all possible combinations of these parameter values. Table

2 gives an overview of all 36 simulation scenarios. Predicted probability changes are later

evaluated for x1.

Table 2: Simulation Scenarios (Specification of DGP). The event rate, 1/(1 + e−α), of sce-

narios 1–18 is 50.0%, and 73.1% for scenarios 19–36.

Scenario β1 σ1 ρ(x1, x2) α

1 0.5 0.5 0.0 0.0
2 1.0 0.5 0.0 0.0
3 2.0 0.5 0.0 0.0
4 0.5 1.0 0.0 0.0
5 1.0 1.0 0.0 0.0
6 2.0 1.0 0.0 0.0
7 0.5 2.0 0.0 0.0
8 1.0 2.0 0.0 0.0
9 2.0 2.0 0.0 0.0

19 0.5 0.5 0.0 1.0
20 1.0 0.5 0.0 1.0
21 2.0 0.5 0.0 1.0
22 0.5 1.0 0.0 1.0
23 1.0 1.0 0.0 1.0
24 2.0 1.0 0.0 1.0
25 0.5 2.0 0.0 1.0
26 1.0 2.0 0.0 1.0
27 2.0 2.0 0.0 1.0

Scenario β1 σ2
1 ρ(x1, x2) α

10 0.5 0.5 0.5 0.0
11 1.0 0.5 0.5 0.0
12 2.0 0.5 0.5 0.0
13 0.5 1.0 0.5 0.0
14 1.0 1.0 0.5 0.0
15 2.0 1.0 0.5 0.0
16 0.5 2.0 0.5 0.0
17 1.0 2.0 0.5 0.0
18 2.0 2.0 0.5 0.0

28 0.5 0.5 0.5 1.0
29 1.0 0.5 0.5 1.0
30 2.0 0.5 0.5 1.0
31 0.5 1.0 0.5 1.0
32 1.0 1.0 0.5 1.0
33 2.0 1.0 0.5 1.0
34 0.5 2.0 0.5 1.0
35 1.0 2.0 0.5 1.0
36 2.0 2.0 0.5 1.0

Based on the simulations for each scenario, I first compute the population parame-

ters of interest. That is, I compute average probability changes, ∆plOV A, as specified in

equation 2.5, based on population data and the true model parameters of the DGP. To

determine whether the OVA specification by Hanmer and Ozan Kalkan (2013) consti-

tutes an unbiased estimator of the theoretically more consistent lOVA specification, I then

compute predicted probability changes ∆̂pOV A based on sample data and the estimated

model parameters.7 The OVA approach was specified in equation 2.2. I compare OVA re-

sults directly to the predicted probability changes computed based on the lOVA approach,

∆̂plOV A (equation 2.5).

3.2 Results

The simulation results for interquartile changes in the independent variable of interest x1

are presented in figure 2. Each plot corresponds to one scenario and presents the esti-

7The estimated model parameters, α̂, β̂1, β̂2, and β̂3, are determined based on a correctly specified

model, with y ∼ B(1, p), and p = F(α+ β1x1 + β2x2 + β3x3).
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mation error of both measures due to sampling. The specifications of each scenario are

indicated on the top and left-hand side of the figure. The average population parameter is

indicated in the top-right corner of each plot; the boxes (interquartile range) and whiskers

(full range) summarize the distribution of the lOVA (white-shaded box) and OVA estima-

tion errors (grey-shaded box) over the 250 simulations. Negative values indicate that for

a given scenarios the estimate was below the population parameter, and positive values

that the estimate was above. Note that the spread of the distribution indicates how spread

out estimation errors are, it does not indicate the precision (or efficiency) of the estimate.

Detailed numeric information on both bias and precision can be found in the Appendix

(Table 3). As there was no significant difference in how the two measures perform in

terms of precision, the presentation here focuses on estimation bias.

Sampling makes estimation error unavoidable. However, for an unbiased measure,

such error will cancel out as more samples are drawn. In other words, in expectation the

estimation error is zero. Figure 2 shows that, for interquartile change in the independent

variable, estimates based on the lOVA are unbiased across all scenarios. While there are

simulations which lead to estimation error, these error cancel out on average. While the

OVA estimate is unbiased in some scenarios, it is heavily biased in others. In all scenarios

where a bias is present, the OVA approach overestimates the true value. In the most

severe scenarios, OVA overestimates the true value by a factor greater than 1.5 (e.g. Panel

B, Scenario 18).

Bias in the OVA measure is largely absent when x1, the independent variable for which

probability changes are computed, plays a negligible role in determining an observation’s

value on the dependent variable, i.e. β1 is small. Similarly, bias is largely absent if

x1 varies little, i.e. σ1 is small. As either factor, β1 or σ1, increases, estimation bias

increases too. The bias is particularly pronounced if both factors assume higher values.

These biases are somewhat more pronounced when the independent variable of interest is

correlated with another independent variable (i.e. ρ(x1, x2) = .5 in scenarios 10-18 and

28-36). However, as can be seen from comparing scenarios 1 and 10, respectively 19 and

28, the correlation itself appears not to induce any bias. Similarly, intercept shifts also

seem to moderate the biases induced by β1 and σ1. In particular, in scenarios where the

intercept α is not 0 but 1 (scenarios 19-36) the biases are, to a small degree, attenuated.

Figure 3 presents the simulation results for counterfactuals based on first differences,

i.e. c = 0 and d = 1. The set up of the figure is the same as above. While there are again

no indications of bias in the lOVA measure, the biases of the OVA measure have different

patterns. Most importantly, not all biases are positive. In particular, low variability in x1

combined with high predictive power and a non-zero intercept (i.e. scenarios 21 and 30)

leads the OVA estimate to underestimate the true value. Unlike before, correlation with

another independent variable and non-zero intercepts appear not to moderate these biases.

Instead, in most scenario where x1 and x2 are correlated, there is a slight upward shift in

the distribution of estimation error. The opposite holds for non-zero intercepts. As the

intercept changes from 0 to 1, the distribution of estimation error is shifted downward in

most scenarios.

The simulation results for standard deviations changes in the independent variable can

be found in the Appendix (Table 4). The patterns mirror those of the interquartile changes,

possibly because both counterfactuals take variability in the independent variable into ac-

count. That being said, overall estimation error is less pronounced, especially in scenarios
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4 Extensions

4.1 Assessing Average Treatment Effects

A common application of predicted probability changes is the computation of average

treatment effects from observational data. In particular, scholars are interested in the av-

erage predicted change in an outcome variable y for a given treatment. For observational

data, the average treatment effect is then defined as,

ATE =
1

N

N∑

1

E(y|dt, X−k,Θ)− E(y|dc, X−k,Θ)

dt − dc
, (4.1)

where dt and dc are the counterfactual values for the treated and control group respec-

tively, and the expected values of y are computed given these counterfactual values, co-

variates X
−k, and model parameters Θ. dt and dc take values 1 and 0 in the case of a

dichotomous treatment, but can take other values for continuous variables. In general, it

is left to the discretion of the researcher to define those values, and it is most common to

chose fixed counterfactual values (Aronow and Samii, 2016).

If the model on the basis of which parameters are estimated is non-linear, the use

of fixed counterfactuals is equally problematic as in the standard OVA. Instead of using

fixed values it is better to use counterfactuals that are defined relative to each observation’s

original value for the xk variable that is manipulated by the treatment. This implies that dt
and dc in the above equation have to be replaced with xk+(dt−dc)/2 and xk−(dt−dc)/2
respectively. Again, this approach has the advantage to compute treatment effects without

inducing any untheorized distortions through the usage of fixed counterfactuals.

4.2 Interval Estimates

As for parameter coefficients, it is important to get an understanding of the uncertainty as-

sociated with measures of predicted probability change. To keep the presentation as sim-

ple as possible I have ignored such uncertainty above and focused on point estimates only.

The delta method is the most prominent analytical approach to derive interval estimates

from statistical models. However, the delta method has at least two major drawbacks here.

First, it only approximates non-linear link functions and thus can lead to estimation errors.

Second, the application of the delta method is complicated by the fact that lOVA, just like

OVA, relies on comparisons of counterfactuals, and not on a single counterfactual. These

problems can be avoided by the use of simulation-based approaches (King, Tomz, and

Wittenberg, 2000).8

Bootstrapping is the most popular simulation-based approach to statistical estimation.

Herron (2000) decribes how confidence intervals can be bootstrapped through iterated

random draws from the model parameters’ estimated multivariate distribution. For each

draw, the predicted probabilities of interest are computed. The resulting distribution de-

scribes the uncertainty in the respective measure and can be conveniently summarized by

the use of confidence intervals, e.g. the central 95% of the distribution. The computa-

tion for lOVA measures proceeds analogously. After estimating the model, the researcher

8Hanmer and Ozan Kalkan (2013) also use a simulation-based approach to derive confidence intervals.
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draws S (e.g. 5000) parameter samples from the respective multivariate distribution, and

for each draw s computes equation 2.5 by plugging in the drawn α and β parameter val-

ues. Following convention, the resulting distribution of predicted probability changes,

∆p
s

lOV A, is then best summarized by its average point estimate and 95%-confidence in-

terval. If a single measure of uncertainty is preferred, one can also compute the standard

error from the simulated distribution. Note that making inferences based on the standard

error requires the researcher to assume that the average predicted probability change is

normally distributed. Following this approach, the small programm accompanying this

paper simulates both confidence intervals and standard errors, and compares lOVA and

OVA results.

5 Conclusion

In this paper, I have shown that combining the OVA with fixed counterfactuals for the

independent variable of interest to compute predicted probability changes, and average

treatment effects, induces distortions not theoretically motivated or understood. There-

fore, I suggested a location-sensitive OVA (lOVA) that evaluates changes in variables of

interest relative to observed values, which is theoretically sound and consistent with the

motivation of the original OVA. With the help of a simulation analysis, I showed that

under certain conditions lOVA leads to widely different results than when OVA is com-

bined with fixed counterfactuals. More importantly, the distortions induced by the use of

fixed counterfactuals can lead to both, positive and negative biases, depending on what

the underlying data-generating process is and what counterfactuals are used. At the same

time, the estimates based on the lOVA specification provided unbiased estimates in all

scenarios and for all counterfactuals. In sum, both the theoretical discussion as well as

the simulation analysis strongly recommend the use of relative rather than fixed counter-

factuals when it comes to the estimation of average predicted probability changes based

on non-linear models.

This paper is accompanied by a small programm–for use with the statistical software

R–that allows researchers to derive predicted probability changes for binary logit models

using their own data. In addition to point estimates, researchers are usually interested in

the uncertainty that accompanies them. Such uncertainty is most commonly summarized

by standard errors or interval estimates. As one of the lOVA extensions, I discuss how

bootstrapping, a simulation-based appraoch, can be used for the computation of standard

error and interval estimates. The program automatically returns point estimates as well as

both measures of uncertainty for all three counterfactuals discussed in this paper, i.e. first

differences, standard deviation differences, and interquartile differences. The program

also returns these quantities for the OVA, such that they can be directly compared to the

lOVA results.

While the elaboration here was limited to continuous independent variables in non-

linear models, similar concerns apply to nominal variables.9 For ordered variables, the

approach employed here suggests that instead of comparing two fixed categories, one

should compute probability changes relative to an observation’s observed category (e.g.

9With the exception of dichotomous variables, where the choice of counterfactuals is trivial.
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from the observed category to the next). However, further research is needed to extend the

approach developed here to non-continuous independent variables in non-linear models.
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Table 3: Bias and Precision of all Estimates and Scenarios

Bias Precision (S.E.)

Interquartile First difference Standard deviation Interquartile First difference Standard deviation

Scenario OVA lOVA OVA lOVA OVA lOVA OVA lOVA OVA lOVA OVA lOVA

Total 4.960 0.096 1.922 0.080 1.481 0.069 0.366 0.423 0.291 0.300 0.319 0.336

1 −0.028 −0.058 −0.076 −0.078 −0.015 −0.031 0.084 0.084 0.124 0.124 0.062 0.062
2 0.109 −0.078 −0.124 −0.131 0.047 −0.059 0.166 0.168 0.245 0.245 0.124 0.125
3 1.219 −0.079 −0.144 −0.064 0.694 −0.027 0.323 0.337 0.474 0.475 0.249 0.256
4 0.351 0.157 0.240 0.136 0.249 0.144 0.171 0.173 0.128 0.13 0.129 0.13
5 1.348 0.039 0.791 0.070 0.775 0.053 0.327 0.34 0.251 0.258 0.251 0.258
6 7.218 −0.025 3.798 0.020 3.804 0.027 0.561 0.640 0.474 0.506 0.474 0.507
7 1.381 0.059 0.531 0.061 0.800 0.084 0.323 0.338 0.126 0.131 0.249 0.256
8 7.308 −0.019 2.781 0.045 3.767 −0.013 0.567 0.646 0.252 0.273 0.479 0.511
9 25.630 −0.168 10.703 −0.025 10.798 −0.041 0.683 1.034 0.474 0.520 0.802 0.888
10 0.002 −0.078 −0.050 −0.124 −0.009 −0.063 0.083 0.084 0.124 0.124 0.062 0.063
11 0.685 0.306 0.674 0.431 0.485 0.241 0.174 0.178 0.257 0.259 0.130 0.133
12 1.888 0.068 0.669 0.071 1.108 0.013 0.323 0.342 0.473 0.482 0.247 0.258
13 0.408 0.037 0.302 0.064 0.292 0.053 0.169 0.172 0.127 0.129 0.127 0.129
14 1.862 0.015 1.128 0.007 1.112 −0.009 0.327 0.346 0.251 0.261 0.25 0.261
15 8.660 0.110 4.774 0.123 4.750 0.096 0.561 0.650 0.474 0.513 0.474 0.513
16 1.871 0.031 0.690 0.024 1.159 0.053 0.323 0.342 0.125 0.132 0.248 0.259
17 8.191 −0.182 3.128 −0.020 4.526 −0.078 0.559 0.647 0.247 0.271 0.473 0.510
18 27.416 −0.040 11.450 0.014 12.077 0.068 0.683 1.043 0.477 0.52 0.806 0.892
19 −0.025 −0.047 −0.346 −0.081 −0.087 −0.033 0.087 0.087 0.13 0.129 0.065 0.065
20 −0.001 −0.146 −1.154 −0.196 −0.274 −0.109 0.172 0.173 0.258 0.254 0.130 0.129

continued . . .
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Bias Precision (S.E.)

Interquartile First difference Standard deviation Interquartile First difference Standard deviation

Scenario OVA lOVA OVA lOVA OVA lOVA OVA lOVA OVA lOVA OVA lOVA

21 1.116 0.081 −3.565 0.105 −0.386 0.044 0.340 0.349 0.501 0.492 0.264 0.264
22 0.109 −0.040 −0.186 −0.010 −0.192 −0.016 0.173 0.174 0.131 0.130 0.131 0.130
23 1.091 0.043 −0.393 0.021 −0.386 0.029 0.338 0.348 0.262 0.263 0.263 0.263
24 5.946 −0.135 −0.322 0.003 −0.351 −0.035 0.594 0.652 0.501 0.515 0.501 0.515
25 0.935 −0.101 0.101 −0.020 −0.425 −0.029 0.335 0.344 0.131 0.133 0.261 0.261
26 6.400 0.090 1.384 0.027 −0.163 0.065 0.599 0.657 0.265 0.275 0.504 0.518
27 23.159 −0.228 6.129 −0.026 0.726 −0.115 0.751 1.036 0.499 0.518 0.807 0.886
28 0.159 0.089 −0.120 0.125 0.033 0.063 0.089 0.090 0.134 0.133 0.067 0.067
29 0.447 0.149 −0.597 0.206 0.062 0.129 0.177 0.180 0.267 0.263 0.135 0.135
30 1.475 −0.019 −2.976 0.025 −0.067 0.014 0.338 0.351 0.501 0.497 0.264 0.266
31 0.128 −0.147 −0.169 −0.092 −0.173 −0.096 0.171 0.174 0.130 0.130 0.130 0.130
32 1.145 −0.270 −0.256 −0.176 −0.275 −0.198 0.332 0.345 0.259 0.261 0.258 0.261
33 7.371 0.029 0.685 0.076 0.675 0.064 0.589 0.655 0.499 0.516 0.499 0.516
34 1.317 −0.169 0.236 −0.053 −0.150 −0.090 0.338 0.350 0.132 0.135 0.263 0.265
35 7.259 0.079 1.817 0.099 0.659 0.151 0.594 0.659 0.264 0.276 0.502 0.520
36 24.905 0.045 6.709 0.031 1.755 0.048 0.756 1.047 0.502 0.519 0.811 0.893

Note: Bias indicates mean difference between estimate, ∆̂p and population parameter, ∆p; total bias indicates mean of all scenario biases (absolute

values). Precision is indicated by the standard error of the estimate, SD(∆̂p)/
√
n, and total precision indicates the mean standard error of all

scenario.
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