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Abstract

The effect of systematically altering the value of a single observation within a

paired differences design is considered. A paradox is observed for the paired samples

t-test, where increasing the value of an observation in the direction of the true mean

difference results in a higher p-value. Using simulation, deviations from robustness

of the paired samples t-test is demonstrated, and is contrasted with Yuen’s paired

samples t-test and the Wilcoxon signed rank sum test.

1 Introduction

The paired samples t-test is logically and numerically equivalent to the one sample t-test

performed on paired differences, and it is one of the most well-established and commonly

performed statistical tests. Zimmerman (1997) demonstrated that the type I error rate

of the paired samples t-test remains close to the nominal significance level for varying

correlation and sample sizes under normality. Under less idealised conditions, Posten

(1979), Herrendörfer et al, (1983), Rasch and Guiard (2004), and Fradette et al. (2003)

found that the paired samples t-test maintains type I error robustness for a range of non-

normal distributions. However, Blair and Higgins (1985) found the Wilcoxon signed

rank sum test to also be type I error robust and to have some power advantages over the

paired samples t-test for a range of non-normal distributions. Chaffin and Rhiel (1993)

demonstrated that the tails of the sampling distribution of the paired samples test statistic

are skewness dependent, particularly with relatively small sample sizes.

Zumbo and Jennings (2002), using a novel contamination model, determined the ef-

fect of outliers on the validity and power of the paired samples t-test. They found the

paired samples t-test to have robust validity for symmetric contamination, but with in-

creasing inflation of the type I error rate with increasing asymmetric contamination. This

is coupled with degradation in power in the presence of outliers when the true effect is

small and sample sizes are small. In their work the number of outliers in the sample is

considered to be a random variable.

One of the assumptions of the paired samples t-test is that the differences between the

two samples are normally distributed, or alternatively and in a practical sense, that the

mean difference has a distribution which can reasonably be approximated by a normal
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distribution. A closely related assumption is that there are no large outliers in the differ-

ences. When performing the paired samples t-test, there may be competition between the

magnitude of the mean difference and the standard deviation of the differences. In par-

ticular, extreme observations within a dataset can distort the balance between these two

elements of the test. To illustrate this, consider the example data in Table 1.

Table 1: Example data for six units within a paired design

Pair Sample 1 Sample 2 Difference

1 30 22 8
2 28 18 10
3 45 45 0
4 57 54 3
5 38 32 6
6 37 37 - X X

For the first five pairs, the mean of Sample 1 is greater than or equal to the mean of

Sample 2. For the sixth pair, let the difference between the Sample 1 observation and

the Sample 2 observation be denoted as X. Intuition might suggest that a positive value

of X may contribute towards an overall significant difference in means being observed.

If this were the case, a large positive value of X should seemingly contribute towards

a significant effect. In the following, the value of X is systematically altered in order

to demonstrate its impact on the paired samples t-test. The observation X will “march”

through the data set and will be colloquially referred to as a marching observation. Table 2

shows the results of a two-sided paired samples t-test for negative values of X through to

large positive values of X.

Table 2: Paired samples t-test on five degrees of freedom for increasing values of X

X t p-value X t p-value X t p-value

−3 1.984 0.104 11 3.670 0.014 25 2.425 0.060
−1 2.406 0.061 13 3.461 0.018 27 2.319 0.068
1 2.870 0.035 15 3.240 0.023 29 2.226 0.077
3 3.321 0.021 17 3.033 0.029 31 2.145 0.085
5 3.671 0.014 19 2.848 0.036 33 2.073 0.093
7 3.840 0.012 21 2.687 0.043 35 2.009 0.101
9 3.820 0.012 23 2.546 0.052 37 1.953 0.108

The values of X for which the null hypothesis of equal means is rejected at the 5%

significance level are highlighted in Table 2. For low values of X it can be seen that as the

value of X increases, the p-value decreases. In this example, as the value of X increases

beyond approximately 8, the p-value increases. As the value of the observed difference

in the sixth pair increases (and hence as the mean difference increases), the p-value also

increases. Observing an extreme value of X in the direction of the seemingly observed

effect can increase the sample variance to such an extent that it impedes the test from
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giving a significant result. The extreme observation paradox is the contrariwise p-value

increase as the value of an extreme observation increases in the direction of the overall

effect.

As the absolute value of the marching observation increases, the assumptions of the

paired samples t-test are increasingly violated. When the sample size is small or the

assumptions of the paired samples t-test are violated, researchers often choose to perform

the Wilcoxon signed rank sum test. Aguinis et al., (2013) summarise a comprehensive list

of techniques for dealing with outliers and state that non-parametric tests give results that

are robust in the presence of outliers. However, Zimmerman (2011) indicates that rank

based methods do not necessarily eliminate the influence of outliers. Another alternative

approach when outliers are present is to use Yuen’s paired samples t-test. In this test, the

principles of trimmed means outlined by Yuen (1974), are applied to the paired differences

(Wilcox, 2005).

In this paper, simulation is used to explore the scenarios in which the extreme obser-

vation paradox is observed in a paired samples design. We are particularly interested in

isolating those situations when two-sided hypothesis testing is undertaken (e.g. see Ring-

walt et al., 2011), when sample sizes are relatively small (i.e. when outliers may have

a greater effect on the paired samples t-test). The concept of a systematically marching

observation similar to the demonstration in Table 2, is used to investigate the effects of

an aberrant observation. In the simulation design, this aberrant observation is a forced

additional observation not fitting with the simulated data, and is not due to inherent vari-

ability. Simulations are performed for an aberrant observation in the direction of the

effect suggested by the rest of the sample, and secondly where an aberrant observation is

in the opposing direction of the effect suggested by the rest of the sample. Thus situations

where the sign of the marching observation is concordant or discordant with the mean

of the other observations are considered. For comparative purposes, the paired samples

t-test, the Wilcoxon signed rank sum test, and Yuen’s paired samples t-test are included.

Null hypothesis significance testing is most frequently performed with a nil-null hy-

pothesis specifying that no difference between groups is present, and a two directional

alternative (Levine et al., 2008). Therefore the impact of an extreme observation for a

two-sided test is the main emphasis of this paper. However, one-sided tests retain some

practical utility, and the simulations are extended to a one-sided test.

We hypothesise that the seemingly paradoxical behaviour exhibited in Table 2 will be

a feature of the paired samples t-test in general. In contrast, we hypothesise that Yuen’s

paired samples t-test and the Wilcoxon signed rank sum test will be robust to a single

aberrant observation.

In order to gain insight, we firstly investigate the mathematical limiting forms of each

of the three test statistics under consideration as a single marching observation becomes

increasingly large compared with the rest of the sample, and then proceed to a simulation

investigation.

2 An Unbounded Marching Observation

For development purposes consider a random sample X1, X2, . . . , Xn−1, Xn , and let

X(1) < X(2) < · · ·X(n−1) < X(n) denote the order statistics. Further, let Xk = Yk
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for (k = 1, 2, . . . , n − 1), let Y(1) < Y(2) < · · ·Y(n−1) be the corresponding order statis-

tics, and let Xn = ξ be the marching observation. In this notation, Yk (k = 1, . . . , n− 1)

denotes the observations prior to the inclusion of the marching observation.

The following analytical exposition investigates the behaviour of the one sample t-
test, Yuen’s paired samples t-test, and the Wilcoxon signed rank sum test, as the marching

observation Xn = ξ becomes relatively large compared with the rest of the sample.

2.1 The t-test

Consider the single sample t-test test statistic on the paired differences, used to test

H0 : µX = 0, defined by

T : =
X̄

σ̂X+

√
n

where

X̄ :=
X1 +X2 + · · ·+Xn

n
and

σ̂X+ :=

√

(X1 − X̄)2 + (X2 − X̄)2 + · · ·+ (Xn − X̄)2

n− 1
.

Observe that

X̄ =
(n− 1)Ȳ + ξ

n
, X̄ − Ȳ =

ξ − Ȳ

n
, and ξ − X̄ =

(n− 1)(ξ − Ȳ )

n
.

Thus

σ̂X+ =

√

(Y1 − X̄)2 + (Y2 − X̄)2 + · · ·+ (Yn−1 − X̄)2 + (ξ − X̄)2

n− 1
.

Note that

n−1
∑

j=1

(Yj − X̄)2 =
n−1
∑

j=1

(Yj − Ȳ + Ȳ − X̄)2

=
n−1
∑

j=1

(Yj − Ȳ )2 + (n− 1)(Ȳ − X̄)2 + 2(Ȳ − X̄)
n−1
∑

j=1

(Yj − Ȳ )

= (Y1 − Ȳ )2 + (Y2 − Ȳ )2 + · · ·+ (Yn−1 − Ȳ )2 + (n− 1)(Ȳ − X̄)2 + 0.

Hence

σ̂X+ =

√

(Y1 − Ȳ )2 + (Y2 − Ȳ )2 + · · ·+ (Yn−1 − Ȳ )2 + (ξ − X̄)2

n− 1
+ (X̄ − Ȳ )2.

For the n− 1 values, define

σ̂Y :=

√

(Y1 − Ȳ )2 + (Y2 − Ȳ )2 + · · ·+ (Yn−1 − Ȳ )2

n− 1
.
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Note that σ̂ does not have the “+” symbol, i.e. that the marching observation is not

included. An alternative definition for σ̂ could have n− 2 in the denominator and so

σ̂X+ =

√

σ̂2
Y +

(ξ − X̄)2

n− 1
+ (X̄ − Ȳ )2

=

√

σ̂2
Y +

(n− 1)2

n2

(ξ − Ȳ )2

n− 1
+

(ξ − X̄)2

n2

=

√

σ̂2
Y +

(ξ − Ȳ )2

n

and hence

T =
(n− 1)Ȳ + ξ

√

nσ̂2
Y + (ξ − Ȳ )2

It can be seen that as ξ → ∞, T → 1, and similarly as ξ → −∞, T → −1. Accordingly,

for any value of significance level likely to be encountered in practice the results ξ →
±∞, T → ±1 indicate that the null hypothesis would not be rejected under the stated

conditions.

2.2 Yuen’s Paired Samples t-test

Let γ denote the per tail proportion of trimming, let e := bγnc and let f := n − 2e.

Define the trimmed sample Xt1, Xt2, . . . , Xtf−1, Xtf as Xtk := X(k+e) (k = 1, 2, . . . , f )

and define the winsorised sample Xw1, Xw2, . . . , Xwf as

Xwk :=











X(e+1) k = 1, 2, . . . , e

X(k) k = e+ 1, e+ 2, . . . , n− e

X(n−e) k = n− e+ 1, n− e+ 2, . . . , n

Let X̄t =
∑f

k=1 Xtk/f , and X̄w =
∑n

k=1 Xwk/n define the trimmed mean and win-

sorised mean respectively and let, σ̂2
Xw+ =

∑n

k=1(Xwk − X̄w)
2/(n − 1) denote the win-

sorised variance. In this notation, Yuen’s test statistic is given by TY := X̄t

σ̂Xw+

√
n(1−2γ).

For ξ < Y(e)

X̄t =
Y(e) + Y(e+1) + Ye+2 + · · ·+ Y(n−e−1)

f
,

X̄w =
eY(e) + Y(e) + Y(e+1) + Y(e+2) + · · ·+ Yn−e−1 + eYn−e−1

n
and

σ̂2
Xw+ =

e(Y(e) − X̄w)
2 +

∑n−e−1
k=e (Y(k) − X̄w)

2 + e(Y(n−e−1) − X̄w)
2

n− 1

For fixed values, Y1, Y2, . . . , Yn−1, as ξ → −∞, TY := X̄t

σ̂Xw+

√
n(1 − 2γ) stabilises to

some limiting value.
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Similarly, for ξ > Y(n−e)

X̄t =
Y(e+1) + Y(e+2) + Y(e+2) + · · ·+ Y(n−e)

f
,

X̄w =
eY(e+1) + Y(e+1) + Y(e+2) + Y(e+2) + · · ·+ Y(n−e) + eYn−e

n
and

σ̂2
Xw+ =

e(Y(e+1) − X̄w)
2 +

∑n−e

k=e+1(Y(k) − X̄w)
2 + e(Y(n−e) − X̄w)

2

n− 1

For fixed values, Y1, Y2, . . . , Yn−1 as ξ → −∞, TY := X̄t

σ̂Xw+

√
n(1 − 2γ) stabilises to

some limiting value. Moreover, for a sufficiently large sample, the limit values for both

directions of the marching observation should be close to each other. Hence the properties

displayed as ξ → −∞ or ξ → −∞ are consistent with TY being a robust test statistic.

2.3 The Wilcoxon signed rank sum test

Assuming no ties and no zero observations, then the test statistic for the Wilcoxon signed

rank sum test, W , is defined as

W = RX
1 sgn(X1) +RX

2 sgn(X2) + · · ·+RX
n sgn(Xn)

where RX
k is the rank of |Xk| among |X1| , |X2| , . . . , |Xn|. If X1, X2, . . . , Xn are inde-

pendent and follow the same symmetric continuous distribution, then W follows a distri-

bution with mean 0 and variance n(n+ 1)(2n+ 1)/6.

Denote by RY
k the rank of |Yk| among |Y1| , |Y2| , . . . , |Yn−1|. For

|ξ| > max {|Y1| , |Y2| , . . . , |Yn−1|} ,

W = RY
1 sgn(Y1) +RY

2 sgn(Y2) + · · ·+RY
n sgn(Yn) + n sgn(ξ).

Hence under the stated conditions, for fixed values Y1, Y2, . . . , Yn−1, the Wilcoxon signed

rank sum statistic stabilises to some situation dependent limit value as ξ → +∞, and

to some situation dependent limit value as ξ → −∞. The difference between these two

values is n−(−n) = 2n, and the standardised values differ by
√

24n/{(n+ 1)(2n+ 1)}.

These are close to each other for sufficiently large n.

3 Simulation Methodology

The approach is to generate sample data meeting the assumptions of the paired samples

t-test, and to then include an additional observation in the sample. This additional ob-

servation systematically changes in its observed value. The paired samples t-test, the

Wilcoxon signed rank test, and Yuen’s paired samples t-test, are performed for a two-

sided nil-null hypothesis. Under a two-sided nil-null hypothesis; the paired samples t-test

is used to test a distribution mean difference of zero; and Yuen’s paired samples t-test is

used to test the distribution of the trimmed mean equal to zero. Historically, the derivation
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of the Wilcoxon rank sum distribution has been made for continuous random variables un-

der a null hypothesis of no distributional differences, and is sensitive to changes in central

location (Gibbons and Chakraborti, 2011).

Within the simulation, the differences are generated rather than the paired observations

themselves. Specifically, n − 1 random normal deviates n1, x2, . . . , xn−1 are generated

using the Box-Muller (1958) transformation, where n represents the sample size of the

paired differences. Under H0 , the n− 1 random normal deviates have a population mean

of zero (µ = 0) and a standard deviation of one (σ = 1).

To isolate the phenomenon and behaviour of interest, if x̄n−1 =
∑n−1

i=1 xi/(n− 1) < 0
then x1, x2, . . . , xn−1 are multiplied by −1 to ensure a non-negative sample mean. (This

change of sign does not affect the validity of a two-sided test of a nil-null hypothesis for

these data.)

Under H1, for each of the n− 1 deviates, a constant d is added to each of the values.

The simulations are performed under normality so that the data fulfil the assumptions of

the test with the exception of an aberrant observation.

An additional observation, xn, is added to the n−1 observations to give a total sample

size of n. For any simulated sample, the value of xn is systematically varied from −8 to 8
in increments of 0.1. It is this value, xn, which is referred to as the ‘marching observation’.

The values of xn approximately range between ±8 standard deviations from the mean and

would therefore cover limits likely encountered in a practical environment. Note that the

condition of x̄n−1 > 0 is to ensure that the concordance of effects (x̄n−1 > 0, xn > 0) or

discordance of effects (x̄n−1 > 0, xn < 0) can be established.

A summary of the values of n, xn and d used in the full factorial simulation design is

given in Table 3. The simulation is run 10 000 times for each combination of sample size

and mean difference.

In a second set of simulations, the impact of the marching observation is similarly

assessed, removing the condition that the mean sample difference is positive, and per-

forming a one-sided test. This is done as per the parameter combinations in Table 3 using

upper tail critical values.

Table 3: Summary of simulation design

Sample size 10, 15, 20, 25
Marching observation −8:8 (0.1)

Mean difference 0, 0.5
Significance level 5%

Number of Iterations 10 000
Programming Language R version 3.1.3

For the paired samples t-test and the Wilcoxon signed rank sum test, the default

stats package in R is used. Yuen’s paired samples t-test is performed using the R pack-

age PairedData as outlined by Wilcox (2005). 10% trimming per tail is performed.

The proportion of the 10 000 iterations where the null hypothesis is rejected is cal-

culated at the nominal significance level of 5%. This gives the Null Hypothesis Rejec-

tion Rate (NHRR). Note that the terminology NHRR is used and not type I error rate,
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because the inclusion of the marching observation would strictly invalidate the underpin-

ning assumptions of the resultant test. The effect of gradually increasing the marching

observation is to gradually violate the assumption of the nil-null hypothesis.

The research question being asked is “How is the performance of the paired samples

t-test, Yuen’s paired samples t-test, and the Wilcoxon signed rank sum test affected by

the presence of an aberrant observation?”

4 Results

The Null Hypothesis Rejection Rate (NHRR) is assessed for each of the three statistical

tests under consideration for a two-sided test, firstly when d = 0 and secondly in the

presence of a systematic effect size (d = 0.5).

Figure 1 gives the NHRR of the paired samples t-test when d = 0, using the nominal

significance level of 5%.

Figure 1: NHRR of the paired samples t-test, d = 0, two-sided

Figure 1 shows that when the value of xn = d = 0, the NHRR is approximately equal

to the nominal type I error rate of 5%. For positive sample means, as the value of xn starts

to increase above zero, the paired samples t-test has an increasingly higher NHRR until

a turning point is reached and with a subsequent return to the nominal type I error rate.

Extreme and increasingly larger values of the marching observation, xn, in the direction
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of the sample effect results in a progressively lower NHRR, with values noticeably lower

than the nominal type I error rate. These effects are replicated in all four sample sizes, but

the effects are marginally less noticeable with increasing sample size. Figure 1 also shows

that a large value for the marching observation in the opposite direction to the mean of

the first n − 1 observations, effectively results in a zero value for the NHRR. This effect

is consistent with the asymptotic behaviour given in Section 2 and the findings alluded to

in the example given in Table 2.

Figure 2 gives the NHRR of Yuen’s paired samples t-test and Figure 3 gives the NHRR

of the Wilcoxon signed rank sum test, both when d = 0.

Figure 2: NHRR of Yuen’s paired samples t-test, d = 0, two-sided.

Figure 2 and Figure 3 show that when xn > 0 and x̄n−1 > 0, both Yuen’s paired

samples t-test and the Wilcoxon signed rank sum test result in the null hypothesis being

rejected more frequently than the nominal significance level. Conversely, when xn < 0
and x̄n−1 > 0, both Yuen’s paired samples t-test and the Wilcoxon signed rank sum

test have a NHRR lower than the nominal significance level. These findings are entirely

consistent with expectation for a robust test given the design of the simulation.

For the Wilcoxon signed rank sum test, due to the use of rank values, the test is

not greatly affected by the magnitude of the extreme observation. Similarly due to the

trimming, Yuen’s paired samples t-test is not greatly affected by the magnitude of the

extreme observation. The phenomenon of a turning point when xn > 0 is not observed

for either the Wilcoxon signed rank sum test or Yuen’s paired samples t-test.
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Figure 3: NHRR of the Wilcoxon signed rank sum test, d = 0, two-sided.
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Figure 4 gives indicative power of the paired samples t-test, where d = 0.5. For a

sample of size n = 10 independent Normal deviates with µ = 0 and σ = 1, the power

of the test for the paired samples t-test for testing H0 : µ = 0 is 0.293. Under the same

conditions, the power of the paired samples t-test for n = 15, 20 and 25 is 0.438, 0.565,

and 0.670 respectively. These reference lines are added to the graphics for comparative

purposes.

Figure 4: NHRR of the paired samples t-test, d = 0.5, two-sided

Figure 4 shows that for xn > d = 0.5, increases in xn are initially associated with an

increase in power. This power increase relative to the expected power for each of the sam-

ple sizes is clear to see but might not be of great practical consequence. In addition, there

is a noticeable turning point at which the power decreases as xn further increases. For

larger sample sizes, the paired samples t-test is relatively more robust to the presence of

an extreme observation. For smaller sample sizes, the power reduction when an extreme

observation is present is exacerbated. When the marching observation is in the opposite

direction to the true effect, an increasingly large negative difference eliminates the effect

under the stated conditions.

Figure 5 gives the NHRR of Yuen’s paired samples t-test and Figure 6 gives the NHRR

of the Wilcoxon signed rank sum test, both when d = 0.5. Under the same normality

conditions, for n = 10, 15, 20 and 25, the corresponding power for the Wilcoxon signed

rank sum test is 0.279, 0.419, 0.543, and 0.648 respectively, and the corresponding power

for the Yuen paired samples t-test is 0.263, 0.356, 0.528, and 0.613 respectively. These
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reference lines are added to the graphic for comparative purposes.

Figure 5: NHRR of Yuen’s paired samples t-test, d = 0.5, two-sided

Figure 5 and 6 show that for xn > d = 0.5, increases in xn are associated with

an increase in power relative to the expected power for each of the sample sizes, but

the increase might not be of great practical consequence. For small samples, when the

marching observation is in the opposite direction to the true effect, an increasingly large

negative marching observation reduces the effect and this is seen in the reduced power.

The second simulation set-up is now considered. The condition that the sample mean

differences are positive is removed, and a one-sided test using the upper tail of the distri-

bution is performed. Figure 7 shows the impact of the marching observation for each of

the three tests when the null hypothesis is true.

Figure 7 demonstrates that the patterns observed and identifiable conclusions for the

two-sided tests are the same under these conditions. In fact, the impact of the marching

observation in the second simulation set-up is qualitatively similar to the first simulation

set-up. For brevity, the remaining graphics under this condition are not displayed.

5 Discussion

We have used a systematically increasing marching observation to demonstrate the im-

pact on the Null Hypothesis Rejection Rate (NHRR) for the paired samples t-test, Yuen’s
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Figure 6: NHRR of the Wilcoxon test, d = 0.5, two-sided.



14 Derrick et al.

Figure 7: NHRR for each of the three tests when n = 15, d = 0, one sided
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paired samples t-test, and the Wilcoxon signed rank sum test. This systematic approach,

similar to one-factor at a time experimentation, would lend itself to other similar investi-

gations e.g. two independent samples design, or to other single sample tests such as the

single sample variance test, or be extended to investigations involving multiple march-

ing observations. In practice, xn and the condition x̄n−1 > 0 may be independent and

the condition x̄n−1 > 0 is imposed to separate potential different behaviours of the tests

statistics.

The mathematical exposition in Section 2 indicates that for a two sided paired samples

t-test, a large observation either concordant or discordant with the rest of the sample will

lead to a non-rejection of the null hypothesis. With the paired samples t-test the inclusion

of a very large positive observation xn into a sample with x̄n−1 > 0 may in fact severely

reduce the probability of rejecting the null hypothesis.

Simulations comprising normal deviates and in testing a nil-null hypothesis of no

location effects have been performed. Stipulation of the condition x̄n−1 > 0 does not

invalidate the two-sided test procedure. However, the inclusion of a single, but often large

discrepant observation, does imply that the nil-null hypothesis is not strictly true, hence

our use of the terminology of the NHRR (the null hypothesis rejection rate), rather than

using the terminology type I error rate.

For small sample sizes there is a paradox when performing the paired samples t-
test that more extreme values of the marching observation in the direction of the sample

mean difference result in a greater p-value than a less extreme value of the marching

observation.

Under a location shift model, the inclusion of genuinely large positive observation xn

into a sample with x̄n−1 should lead to an increase in statistical power in a two-sided test

of the nil-null hypothesis. This effect is observed with Yuen’s paired samples t-test and

with the Wilcoxon signed rank sum test, but it is not consistently observed with the paired

samples t-test.

Under a location shift model, the inclusion of a large negative observation xn into a

sample with x̄n−1 > 0 should lead to a relative decrease in statistical power. This effect is

observed with Yuen’s paired samples t-test and with the Wilcoxon signed rank sum test,

but the effect is most evident, and is sample size dependent, for the paired samples t-test.

In summary, Yuen’s paired samples t-test and the Wilcoxon signed rank sum test

broadly display properties consistent with being robust statistical tests in the presence of

a large outlier. In contrast the paired samples t-test displays behaviour strongly dependent

on the magnitude of the outlier. Specifically, for small sample sizes the more extreme the

values of the marching observation in the direction of the sample mean difference the

greater the p-value compared to a less extreme value of the marching observation.

Zumbo and Jennings (2002), using their novel contamination model, concluded that

the paired samples t-test had an inflated type I error rate with increasing asymmetric

contamination, however our marching observation simulations indicate that the effect of

a single outlier on this test is dependent on sample size, magnitude and direction of the

outlier, and could lead to increases and decreases in the NHRR. It should be noted that the

simulations of Zumbo and Jennings (2002) consisted of situations in which the underlying

distributions were contaminated with outliers and simultaneously a true null hypothesis is

maintained. In contrast our simulations are based on the fulfilment of correct assumptions

prior to the inclusion of the marching observation.



16 Derrick et al.

Our simulations demonstrate the seemingly paradoxical effect of large outliers on

the performance of the paired samples t-test, and although we concur with Zimmerman

(2011) that rank based methods do not necessarily eliminate the influence of outliers, the

simulations indicate that Yuen’s paired samples t-test and the Wilcoxon signed rank sum

test have robust behaviour in the presence of a single outlying observation.

In the preparation of this paper, methods for outlier detection in the conditions above

were attempted, but we were unable to identify a suitable method. With reference to

paired samples, Preece (1982) states that formal procedures for the detection and rejection

of outliers are of negligible use for small sample sizes. Further debate and investigation

into outlier detection methods offers an area for further research.
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