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Abstract

Considering a Pareto model with unknown shape and scale parameters α and

β, respectively, we are interested in Thompson shrinkage test estimation for the

shape parameter α under the Squared Log Error Loss (SLEL) function. We find

a risk-unbiased estimator for α and compute its risk under the SLEL. According to

Thompson (1986), we construct the pretest shrinkage (PTS) estimators for α with the

help of a point guess value α0 and record observations. We investigate the risk-bias

of these estimators and compute their risks numerically. A comparison is performed

between the PTS estimators and a risk-unbiased estimator. A numerical example is

presented for illustrative and comparative purposes. We end the paper by discussion

and concluding remarks.

1 Introduction

In many situations, we have a point guess value regarding the parameter of interest from

past investigations or any other sources whatsoever, which is considered as nonsample in-

formation or uncertain prior information. Thompson (1968) proposed linear point shrink-

age estimators by combining sample information and nonsample information by moving

the unbiased estimator closer to a point guess value in the hope that it will perform better

than the unbiased estimator.

Many researchers have considered the problem of shrinkage estimation, see Pandey

and Singh (1980) and Singh et al. (1996) among others. Pretest estimators may be con-

structed for incorporating a pretest on guess value, when the prior knowledge is not trust-

worthy. Pandey and Singh (1993) proposed shrinkage pretest estimators for the Weibull

shape parameter. Baklizi (2005) developed a pretest estimator for the exponential scale

parameter. Prakash and Singh (2007) and Prakash and Singh (2008) dealt with shrink-

age pretest estimation under the LINEX loss in Pareto and exponential distribution, re-

spectively. New researches are in works by Belaghi et al.(2015), Naghizadeh Qomi and

Barmoodeh (2015) and Kiapour and Naghizadeh Qomi (2016).

A random variable X is said to have a Pareto distribution, denoted by X ∼ Par(α, β),
if its cumulative distribution function (cdf) is

F (x;α; β) = 1−
(

β

x

)α

, x > β, α > 0, β > 0,
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and the probability density function (pdf) is

f(x;α; β) = αβαx−(α+1), x > β, α > 0, β > 0. (1.1)

In this paper, we are interested in the construction of PTS estimators based on records

from Pareto distribution under the SLEL introduced by Brown (1968) of the form

L(α, δ) = (ln δ − lnα)2 =

[

ln
δ

α

]2

,

where δ is an estimator of α. This loss is convex for ∆ = δ
α
≤ e and concave otherwise,

but has a unique minimum at ∆ = 1. Also when ∆ > 1, this loss increases sublinearly,

while when 0 < ∆ < 1, it rises rapidly to infinity at zero. The SLEL function is useful

in situations where underestimation is more serious than overestimation; see Sanjari Far-

sipour and Zakerzadeh (2005), Kiapour and Nematollahi (2011) and Naghizadeh Qomi

and Barmoodeh (2015).

The paper is organized as follows. In section 2, we present the form of data and give

the maximum likelihood estimator (MLE) of α and β. A risk-unbiased estimator of α
under the SLEL is obtained in section 3. The PTS estimators are obtained and their risks

are computed under the SLEL in section 5. A comparsion study between PSE and RUE

is performed in section 5. An illustrated example is presented in section 6. We conclude

in section 7 with a summary of our findings and some remarks.

2 Record-breaking Data

Consider a sequence {Xi, i ≥ 1} of independent and identically distributed (iid) continu-

ous random variables having a cdf F and a pdf f . An observation Xj will be called to be a

lower record value if its value is smaller than all previous observations X1, X2, . . . , Xj−1.

By convention X1 is the first lower record value. An analogous definition deals with up-

per records. Such data may be represented by (R,K) := (R1, k1, ..., Rm, km), where Ri is

the i-th record value meaning new minimum (or maximum) and ki is the number of trials

following the observation of Ri that are needed to obtain a new record value Ri+1, see

Doostparast and Balakrishnan (2012). Chandler (1952) began studing the distributions

of lower records for iid random variables. Records and their properties have been exten-

sively studied in literature, see Arnold et al. (1998) and the references therein for more

details on applications of records.

Consider a sequence of independent random variables X1, X2, X3, ... drawn from a

pdf f(.) and items are presented sequently and sampling is terminated when the mth

minimum is observed. We assume that only successive minima are observable, so that

the observed value may be represented as (r, k) := (r1, k1, r2, k2, ..., rm, km), where ri
is the value of the ith observed minimum, and ki is the number of trials required to

obtain the next new minimum. The likelihood function associated with the sequence

r1, k1, ..., rm, km is of the form

L(r, k) =
m
∏

i=1

f(ri)[1− F (ri)]
ki−1I(−∞, ri−1), (2.1)
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where r0 ≡ ∞, km ≡ 1 and I(A) is the indicator function of the set A. The total number

of items sampled is a random number, and km is defined to be one for convenience. Con-

sidering the sequence R1, k1, ..., Rm, km is coming from Par(α, β) in (1.1), the likelihood

function in (2.1) based on (R1, k1, ..., Rm, km) at (r1, k1, r2, k2, ..., rm, km) is given by

L(α, β|r, k) =
αmβα

∑
m

i=1
ki

∏m
i=1 r

αki+1
i

, 0 < β ≤ rm, α > 0.

After some simple algebraic calculations, the maximum likelihood of β and α are β̂ = Rm

and α̂ = m
Tm

respectively, where Tm =
∑m−1

i=1 ki log
Ri

Rm

which is distributed as Gamma

(m−1, α−1) or equivalently, 2αTm ∼ χ2
2(m−1), see Doostparast and Balakrishnan (2012).

3 A Risk-unbiased Estimator

Lehmann (1951) provided the concept of risk-unbiased estimator. An estimator δ of α is

said to be risk unbiased if it satisfies

E[L(α, δ)] ≤ E[L(α′, δ)], ∀α′ 6= α.

Form the SLEL setting, we have

E

[

ln2 δ

α

]

− E

[

ln2 δ

α′

]

= (ln2 α− ln2 α′)− 2(lnα− lnα′)E[ln δ].

If we consider E[ln δ] = lnα, we conclude that

E

[

ln2 δ

α

]

− E

[

ln2 α

α′

]

= −(lnα− lnα′)2 < 0.

Therefore, an estimator δ of α is risk-unbiased under the SLEL if it satisfies in the condi-

tion E[ln δ] = lnα or equivalently E[ln(δ/α)] = 0. Note that, if E[ln(δ/α)] > 0(< 0),
then the estimator δ of α is positively (negatively) risk-biased.

The following lemma is useful for deriving a risk-unbiased estimator of α under the

SLEL.

Lemma 3.1. Let Y ∼ χ2
2a, Γ(a) denotes the complete gamma function given by

Γ(a) =

∫

∞

0

ta−1e−tdt,

Ψ(a) = d
da
Γ(a) is the digamma function, and Ψ′(.) is the trigamma function which is

defined as Ψ′(a) = d
da
Ψ(a). Then we have

(i) E[lnY ] = ln 2 + Ψ(a).

(ii) E[ln2 Y ] = [ln 2 + Ψ(a)]2 +Ψ′(a).

Proof. For a proof, see Naghizadeh Qomi (2017).

In the following theorem, we find a risk-unbiased estimator of α based on α̂.
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Theorem 3.2. The estimator α̂u = d1α̂, where d1 = m−1 exp(Ψ(m − 1)), is a risk-

unbiased estimator for α under the SLEL and its risk is R(α, α̂u) = Ψ′(m− 1).

Proof. By assuming a = m− 1 and Y = 2αTm ∼ χ2
2(m−1) in Lemma 3.1.i, we have

E[ln α̂u] = E

[

ln

(

d1
m

Tm

)]

= ln d1 + lnm+ E

[

ln

(

2α

Y

)]

= Ψ(m− 1)− E[ln(Y )] + ln 2α

= lnα.

Also the risk of α̂u is

R(α, α̂u) = E

[

ln2

(

d1α̂

α

)]

= E

[

ln2

(

2md1
Y

)]

= (ln2(2md1)) + E[ln2 Y ]− 2{ln(2md1)}E[lnY ]

= Ψ′(m− 1).

4 Pretest Shrinkage Estimation

4.1 Shrinkage Estimators

We consider the following Thompson shrinkage estimators for the parameter α using a

prior point guess α0 of α as

α̂s = lα̂u + (1− l)α0, (4.1)

where l ∈ [0, 1] denotes the shrinkage factor. The value of (1− l) may be assigned by the

experimenter according to confidence in the prior value of α0. Ideally, the coefficient l is

chosen to minimize the risk of the estimator (4.1), see Ahmed (1992). The risk of (4.1)

under the SLEL is given by

R(α, α̂s) = E

[

ln2

(

lα̂u + (1− l)α0

α

)]

= E

[

ln2

(

2mld1
Y

+ (1− l)α?

)]

=

∫

∞

0

ln2

(

2mld1
y

+ (1− l)α?

)

g(y)dy, (4.2)

where α? = α0/α and g(y) is the pdf of Y = 2αTm ∼ χ2
2(m−1).

4.2 PTS Estimators and their Risks

For checking the guess α0 is close to α, a pretest H0 : α = α0 versus H0 : α 6= α0 is

performed. We can construct our PTS estimators based on acceptance or rejection of the



Pretest Shrinkage Estimators . . . 53

null H0. The general form of the proposed estimators is lα̂u + (1− l)α0, if H0 : α = α0

is accepted or α̂u, otherwise. If H0 : α = α0 is accepted at the level of γ, then we have

Pr

(

q1 ≤ 2α0Tm ≤ q2

)

= 1− γ.

where q1 = χ2
γ/2,2(m−1) and q2 = χ2

1−γ/2,2(m−1) are left quantiles of the chi-square distri-

bution with 2(m− 1) degrees of freedom. Therefore, the proposed PTS estimator can be

written as

α̂st = (lα̂u + (1− l)α0)I(t1 ≤ Tm ≤ t2) + α̂uI(Tm < t1 or Tm > t2) (4.3)

where t1 = q1/2α0 and t2 = q2/2α0. The risk-bias of the PTS estimator under the SLEL

is given by

E

[

ln

(

α̂st

α

)]

= E

[

ln

(

lα̂u + (1− l)α0

α

)

I(t1 ≤ Tm ≤ t2)

]

+ E

[

ln

(

α̂u

α

)

I(Tm < t1 or Tm > t2)

]

= E

[

ln

(

(1− l)α? +
2mld1
Y

)

I(y1 ≤ Y ≤ y2)

]

+ E

[

ln

(

2md1
Y

)]

− E

[

ln

(

2md1
Y

)

I(y1 ≤ Y ≤ y2)

]

=

∫ y2

y1

{

ln

(

(1− l)α? +
2mld1

y

)

− ln

(

2md1
y

)}

g(y)dy, (4.4)

where y1 = q1/α
? and y2 = q2/α

?. Figure 1, shows the plot of (4.4) for selected values

of m = 2(1)5 and γ = 0.01 with respect to α?, which is computed numerically using

the statistical package R version 3.1.2. It is observed that the risk-bias may be negative,

zero or positive, then we can state that the estimator α̂st may be negatively risk-biased,

risk-unbiased or positively risk-biased.

Using a derivation similar to the above, the risk of the PTS estimator given in (4.3)

under the LSEL function is

R(α, α̂st) = E

[

ln2

(

(1− l)α? +
2mld1
Y

)

I(y1 ≤ Y ≤ y2)

]

+ E

[

ln2

(

2md1
Y

)]

− E

[

ln2

(

2md1
Y

)

I(y1 ≤ Y ≤ y2)

]

=

∫ y2

y1

{

ln2

(

(1− l)α? +
2mld1

y

)

− ln2

(

2md1
y

)}

g(y)dy +Ψ′(m− 1).
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Figure 1: The risk-bias of the PTS estimator α̂st for selected values of m = 2(1)5, γ = 0.01
and l = 0.2(0.2)0.8 with respect to α?

5 Comparison between PTS Estimator and a Risk-unbi-

ased Estimator

In this section, we evaluate the performance of the proposed estimators. For comparison,

the relative efficiency (RE) of the estimator α̂st with respect to the risk-unbiased estimator

α̂u is calculated as

RE(α̂st, α̂u) =
R(α, α̂u)

R(α, α̂st)
. (5.1)

Figures 2–4 give the relative efficiency (5.1). Figure 2 shows the RE for the selected

values of m = 2(1)5, γ = 0.01 and l = 0.2(0.2)0.8 with respect to α? = α0/α. Note

that we used the notation low(step)up for presentation of values. From this figure, we

find that no PTS estimator perform uniformly better than the α̂u. We see that the PTS
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Figure 2: The RE between the PTS estimator and the risk-unbiased estimator for selected

values of m = 2(1)5, γ = 0.01 and l = 0.2(0.2)0.8 with respect to α?

estimators are better than the α̂u for the values of α? near to one (α0 close to α). The RE

between the PTS and the risk-unbiased estimator is plotted in Figure 3 for selected values

of m = 2(1)5 and γ = 0.01, 0.05, 0.1 with respect to shrinkage factor l, when α? = 1.

This figure show that the RE is decreasing in l, i.e., the PTS estimators with small l
perform better than other estimators when m and γ are fixed. Also, the PTS estimators

with small γ are good for fixed m and l. Finally, from Figure 4, we observe that the PTS

estimators with large m have good performance when γ and l are fixed.

6 A Real Example

The following data reported by Dyer (1981) are the annual wage data (in multiplies of

100 US dollars) of a random sample of 30 production-line workers in a large industrial
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Figure 3: The RE between the PTS estimator and the risk-unbiased estimator for selected

values of α? = 1, m = 2(1)5, γ = 0.01, 0.05, 0.1 with respect to l

firm:

112 154 119 108 112 156 123 103 115 107

125 119 128 132 107 151 103 104 116 140

108 105 158 104 119 111 101 157 112 115

He determined that Pareto distribution provided an adequate fit for these data. If we

consider m = 3, then the observed record data are obtained in Table 1.

We get T3 = 0.441 and then the MLE of α is α̂ = 3
T3

= 6.804. We consider the

estimate of α when the guess value is α0 = 6. Also, d1 = eΨ(2)/3 = 0.509 and α̂u =
3.4632 with risk R(α, α̂u) = 0.64493. The estimate of α? is α̂? = 6

6.804
= 0.89. We

consider four values of shrinkage factor as follows:

1. The value of l1 = 0.013, which is obtained from minimizing the risk of shrinkage

estimator α̂s given in (4.2).
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Figure 4: The RE between the PTS estimator and the risk-unbiased estimator for selected

values of α? = 1, γ = 0.01, 0.05, 0.1, 0.2 and m = 2(1)4 with respect to l

2. The value of l2 = d1 = 0.509.

3. The test statistic for testing H0 : α = 6 is χ2 = 2α0T3 = 5.292 and the correspond-

ing pvalue is P (χ2 > 5.292) = 0.259. A large pvalue indicates that α is close to the

guess α0 = 6 (Tse and Tso, 1996). Then we can consider l3 = 1−pvalue = 0.741.

4. The root of p-value support α0 more strongly. Thus, the final shrinkage factor can

be l4 = 1−
√
pvalue = 0.491.

The risks and RE’s of the risk-unbiased estimator and the PTS estimators α̂
(i)
st corre-

sponding to the shrinkage factors li, i = 1, 2, 3, 4 are summarized in Table 2.

From Table 2, we observe that all of the PTS estimators are better than the estimator

α̂u. Also, the estimator α̂
(1)
st corresponding to the shrinkage factor l1 = 0.013 is more

efficient than other estimators.



58 L. Barmoodeh and M. Naghizadeh Qomi

Table 1: Record data arising from annual wage data

i 1 2 3

Ri 112 108 103
Ki 3 4 1

Table 2: Risks and REs of the risk-unbiased estimator and the PTS estimators

Estimator α̂u α̂
(1)
st α̂

(2)
st α̂

(3)
st α̂

(4)
st

Risk 0.644 93 0.212 33 0.338 57 0.457 29 0.330 80
R.E. — 3.037 38 1.904 82 1.410 33 1.949 61

7 Summary and Some Remarks

The present paper dealing with the construction of PTS estimators for the shape parameter

of a Pareto model based on lower record values under the SLEL. A risk-unbiased estimator

of the shape parameter is derived under the SLEL. We proposed PTS estimators based on

Thompson method and compute their risks numerically. The RE of these estimators and

the risk-unbiased estimator is calculated and plotted for various settings. These plots show

that the proposed PTS are more efficient when the experimenter has a point guess close to

the true. In this case, the RE is decreasing in shrinkage factor for fixed other parameters.

Also, a PTS estimator constructed by a smaller level of significance is preferable. In a

real example, we used four shrinkage factors for constructing the PTS estimators. We

observed that the PTS estimator with the shrinkage factor obtained by minimizing the

shrinkage estimator α̂s has a smaller risk than other PTS estimators.
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