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Estimating the Coefficient of Asymptotic Tail

Independence: a Comparison of Methods
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Abstract

Many multivariate analyses require the account of extreme events. Correlation is

an insufficient measure to quantify tail dependence. The most common tail depen-

dence coefficients are based on the probability of simultaneous exceedances. The

coefficient of asymptotic tail independence introduced in Ledford and Tawn ([18]

1996) is a bivariate measure often used in the tail modeling of data in finance, en-

vironment, insurance, among other fields of applications. It can be estimated as

the tail index of the minimum component of a random pair with transformed unit

Pareto marginals. The literature regarding the estimation of the tail index is exten-

sive. Semi-parametric inference requires the choice of the number k of the largest

order statistics that lead to the best estimate, where there is a tricky trade-off be-

tween variance and bias. Many methodologies have been developed to undertake

this choice, most of them applied to the Hill estimator (Hill, [16] 1975). We are go-

ing to analyze, through simulation, some of these methods within the estimation of

the coefficient of asymptotic tail independence. We also compare with a minimum-

variance reduced-bias Hill estimator presented in Caeiro et al. ([3] 2005). A pure

heuristic procedure adapted from Frahm et al. ([13] 2005), used in a different con-

text but with a resembling framework, will also be implemented. We will see that

some of these simple tools should not be discarded in this context. Our study will be

complemented by applications to real datasets.

1 Introduction

It is undeniable that extreme events have been occurring in areas like environment (e.g.

climate changes due to pollution and global heating), finance (e.g., market crashes due to

less regulation and globalization), telecommunications (e.g., growing traffic due to a high

expanding technological development), among others. Extreme values are therefore the

subject of concern of many analysts and researchers, who have come to realize that they

should be dealt with some care, requiring their own treatment. For instance, the classical

linear correlation is not a suitable dependence measure if the dependence characteristics in

the tail differ from the remaining realizations in the sample. An illustration is addressed in

Embrechts et al. ([9] 2002). To this end, the tail dependence coefficient (TDC) defined in
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Joe ([17] 1997), usually denoted by λ, is more appropriate. More precisely, for a random

pair (X, Y ) with respective marginal distribution functions (dfs) FX and FY , the TDC is

given by

λ = lim
t↓0

P (FY (Y ) > 1− t|FX(X) > 1− t), (1.1)

whenever the limit exists. Roughly speaking, the TDC evaluates the probability of one

variable exceeding a large value given that the other also exceeds it. A positive TDC

means that X and Y are tail dependent and whenever null we conclude the random pair

is tail independent. In this latter case, the rate of convergence towards zero is a kind

of residual tail dependence that, once ignored, may lead to an under-estimation of the

risk underlying the simultaneous exceedance of a large value. On the other hand, by

considering that the random variables (rv’s) X and Y are tail dependent when they are

actually asymptotically independent, it will result in an over-estimation of such risk. The

degree of misspecification depends on the degree of asymptotic independence given by

the mentioned rate of convergence, denoted η in Ledford and Tawn ([18] 1996). More

precisely, it is assumed that

P (FX(X) > 1− t, FY (Y ) > 1− t) = t1/ηL(t), η ∈ (0, 1], (1.2)

where L(t) is a slowly varying function at zero, i.e., L(tx)/L(t) → 1 as t ↓ 0 for all x > 0.

We call the parameter η the coefficient of asymptotic tail independence. Whenever η < 1,

X and Y are asymptotically independent and, if η = 1, asymptotic dependence holds if

L(t) → c > 0, as t ↓ 0. In case X and Y are exactly independent then η = 1/2 and we can

also discern between asymptotically vanishing negative dependence and asymptotically

vanishing positive dependence if, respectively, η ∈ (0, 1/2) and η ∈ (1/2, 1). Observe

that we can state (1.2) as

P

(
min

(
1

1− FX(X)
,

1

1− FY (Y )

)
> t

)
= t−1/ηL(1/t), (1.3)

and thus η corresponds to the tail index of the minimum of the two marginals standardized

as unit Pareto. The tail index, also denoted extreme value index, quantifies the “weight”

of the tail of a univariate distribution: whenever negative, null or positive it means that the

tail of the underlying model is, respectively, “light”, “exponential” or “heavy”. In what

concerns univariate extreme values, it is the primary parameter as it is implicated in all

other extremal parameters, such as, extremal quantiles, right end-point of distributions,

probability of exceedance of large levels, as well as return periods, among others. There-

fore, the estimation of the tail index is a crucial issue, with numerous contributions in the

literature. A survey on this topic can be seen, for instance, in Beirlant et al. ([2] 2004).

Under a semi-parametric framework in the domain of heavy tails, the Hill estimator,

introduced in Hill ([16] 1975), have proved to possess good properties, being an essential

tool in any application on this topic. For a random sample (T1, . . . , Tn), the Hill estimator

corresponds to the sample mean of the log-excesses of the k + 1 larger order statistics

Tn:n ≥ . . . ≥ Tn−k:n, i.e.,

Hn(k) ≡ H(k) :=
1

k

k∑

i=1

log
Tn−i+1:n

Tn−k:n

, 1 ≤ k < n, (1.4)
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Consistency requires that k must be intermediate, that is, a sequence of integers k ≡ kn,

1 ≤ k < n, such that

kn → ∞ and kn/n → 0, as n → ∞.

There is no definite formula to obtain k and it must be chosen not too small to avoid

high variance but also not to large to prevent high bias. Figure 1 illustrates this issue,

particularly the dashed line corresponding to a unit Frchet model where the tail index is 1.

Observe also that there is a kind of stable area of the sample path around the true value of

the tail index, where the variance is no longer high and the bias haven’t started to increase.

This disadvantage is transversal to the semi-parametric tools concerning extreme values

inference. In the particular case of the Hill estimator, many efforts have been made to

minimize the problem, ranging from bias-corrected versions to the implementation of

procedures to compute k. The minimum-variance reduced-bias (MVRB) Hill estimator

presented in Caeiro et al. ([3] 2005; see also Neves et al. [21] 2015) was developed for

the Hall-Welsh class (within Generalized Pareto distributions), with reciprocal quantile

function

F−1(1− 1/x) = Cxγ (1 + γβxρ/ρ+ o(xρ)) , x → ∞, (1.5)

where γ > 0 is the tail index of model F , C > 0, and β 6= 0 and ρ < 0 are second order

parameters. The MVRB Hill estimator is given by

CHn(k) ≡ CH(k) := H(k)

(
1− β̂(n/k)ρ̂

1− ρ̂

)
, 1 ≤ k < n, (1.6)

where β̂ and ρ̂ are suitable estimators of β and ρ, respectively. Details about these latter

are addressed in Caeiro et al. ([4] 2009) and references therein. We will denote it “cor-

rected Hill” (CH). Our aim is to compare, through simulation, several methods regarding

the Hill and corrected Hill estimators applied to the estimation of η. We also consider the

graphical and pure heuristic procedure presented in Frahm et al. ([13] 2005) in the con-

text of estimating the TDC λ in (1.1), also relying on the choice of k upper order statistics

with the same bias/variance controversy. All the estimation procedures are described in

Section 2. The simulation study is conducted in Section 3 and applications to real datasets

appear in Section 4. A small discussion ends this work in Section 5.

2 Estimation methods

In this section we describe the procedures that we are going to consider in the estimation

of the coefficient of asymptotic tail independence η given in (1.3) and therefore corre-

sponding to the tail index of

T = min((1− FX(X))−1, (1− FY (Y ))−1). (2.1)

Coefficient η is positive and we can use positive tail index estimators such as Hill. Observe

that T is the minimum between two unit Pareto r.v.’s Alternatively, we can also undertake
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Figure 1: Hill plots of 1000 realizations of a unit Pareto (full line) and a unit Fréchet

(dashed line), both with tail index equal to 1 (horizontal line).

a unit Frchet marginal transformation since 1−FX(X) ∼ − logFX(X). However, in the

sequel, we prosecute with unit Pareto marginals, since the Hill estimator has smaller bias

in the Pareto models than in the Frchet ones (see Figure 1; see also Draisma et al. [6]

2004 and references therein). In order to estimate the unknown marginal df’s FX and FY

we consider their empirical counterparts (ranks of the components), more precisely,

T
(n)
i := min((n+ 1)/(n+ 1−RX

i ), (n+ 1)/(n+ 1−RY
i )), i = 1, . . . , n

where RX
i denotes the rank of Xi among (X1, . . . , Xn) and RY

i denotes the rank of Yi

among (Y1, . . . , Yn).

The estimation of η through the tail index estimators Hill and maximum likelihood

(Smith, [24] 1987) was addressed in Draisma et al. ([6] 2004). Other estimators were

also considered in Poon et al. ([23] 2003; see also references therein) and more recently

in Goegebeur and Guillou ([14] 2013) and Dutang et al. ([8] 2014). However, no method

was analyzed in order to attain the best choice of k in estimation.

In the domain of positive tail indexes, the Hill estimator is the most widely studied

and many developments have been appearing around it. The main topics concern meth-

ods to obtain the value of k related to the number of tail observations to use in estimation

and procedures to control the bias without increasing the variance. The corrected Hill

version in (1.6), for instance, removes from Hill its dominant bias component estimated

by H(k)(β̂(n/k)ρ̂)/(1− ρ̂).

In the following, we describe the methods developed in literature for the Hill estimator

to compute the value of k, that will be used to estimate η (the tail index of rv T in (2.1))

in our simulation study.

Based on Beirlant et al. ([1] 2002) and little restrictive conditions on the underlying
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model, we have

Yi := (i+ 1) log
T

(n)
n−i:n H(i)

T
(n)
n−(i+1):n H(i+ 1)

= η + b(n/k)

(
i

k

)−ρ

+ εi, i = 1, ..., k, (2.2)

where the error term εi is zero-centered and b is a positive function such that b(x) → 0, as

x → ∞. Extensive simulation studies conclude that the results tend to be better when ρ is

considered fixed, even if misspecified. Matthys and Beirlant ([19] 2000) suggest ρ = −1.

From model (2.2), the resulting least squares estimators of η and b(n/k) are given by

η̃LSk,n = Y k − b̃LSk,n/(1− ρ) and b̃LSk,n = (1−ρ)2(1−2ρ)
ρ2

1
k

∑k
i=1

((
i
k

)−ρ − 1
1−ρ

)
Yi. (2.3)

Thus, by replacing these estimates in the Hill’s asymptotic mean squared error (AMSE)

AMSE(H(k)) = η2

k
+
(

b(n/k)
1−ρ

)2
,

we are able to compute k̂1
opt as the value of k that minimizes the obtained estimates of the

AMSE and estimate η as H(k̂1
opt).

On the other hand, we can compute the approximate value of k that minimizes the

AMSE, given by

kopt ∼ b(n/k)−2/(1−2ρ)k−2ρ/(1−2ρ)
(

η2(1−ρ)2

−2ρ

)1/(1−2ρ)

. (2.4)

See, e.g., Beirlant et al. ([1] 2002). Replacing again η and b(n/k) by the respective least

squares estimates in (2.3) with fixed ρ = −1, we derive k̂opt,k, for k = 3, ..., n, using

(2.4). Then compute k̂2
opt = median{k̂opt,k, k = 3, ..., bn

2
c}, where bxc denotes the

largest integer not exceeding x and consider η estimated by H(k̂2
opt).

Further reading of the methods is referred to Beirlant et al. ([1] 2002), Matthys and

Beirlant ([19] 2000) and references therein. In the sequel, they are shortly denoted, re-

spectively, AMSE and KOPT.

The adaptive procedure of Drees and Kaufmann ([6] 1998) looks for the optimum k
under which the bias starts to dominate the variance. The method is developed for the

Hall-Welsh class of models defined in (1.5), for which it is proved that the maximum

random fluctuation of
√
i(H(i) − η), i = 1, ..., k − 1, with k ≡ kn an intermediate

sequence, is of order
√
log log n. More precisely, for ρ fixed at −1, we have:

1. Consider rn = 2.5× η̃ × n0.25, with η̃ = η̂2√n,n.

2. Calculate k̃(rn) := min{k = 1, ..., n − 1 : maxi<k

√
i|H(i) − H(k)| > rn}. If√

i|H(i) − H(k)| > rn doesn’t hold for any k, consider 0.9 × rn to rn and repeat

step 2, otherwise move to step 3.

3. For ε ∈ (0, 1), usually ε = 0.7, obtain

k̂DK =

1
3
(2η̃2)1/3

(
k̃(rεn)

(k̃(rn))ε

)1/(1−ε)
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This method will be shortly referred DK.

Sousa and Michailidis (2004) method is based on the Hill sum plot, (k, Sk), k =
1, ..., n − 1, where Sk = kH(k). We have E(Sk) = kη, an thus the sumplot must

be approximately linear for the values of k where H(k) ≈ η, with the respective slope

being an estimator of η. The method essentially seeks the breakdown of linearity. Their

approach is based on a sequential testing procedure implemented in McGee and Carleton

([20] 1970), leaning over approximately Pareto tail models. More precisely, consider the

regression model y = Xη + δ, with y = (S1, ..., Sk)
′, X = [1 i]ki=1 and δ the error term.

It is checked the null hypothesis that a new point y0 is adjacent to the left or to the right

of the set of points y = (y1, ..., yk), through the statistics

TS = s−2

(
(y0 − ŷ∗0)

2 +
k∑

i=1

(ŷi − ŷ∗i )
2

)
,

where ∗ denotes the predictions based on k + 1 and s2 = (k − 2)−1(y′y − η̂X ′y). Since

TS is approximately distributed by F1,k−2, the null hypothesis is rejected if TS is larger

than the (1 − α)-quantile, F1,k−2;1−α. The method, shortly denoted SP from now on, is

described in the following algorithm:

1. Fit a least-squares regression line to the initial k = νn upper observations, y =
[yi]

k
i=1 (usually ν = 0.02).

2. Using the test statistic TS, determine if a new point y0 = yj for j > k, belongs to

the original set of points y. Go adding points until the null hypothesis is rejected.

3. Consider knew = max(0, {j : TS < F1,k−2;1−α}). If knew = 0, no new points

are added to y and thus move forward to step 4. Return to step 1. if knew > 0 by

considering k = knew.

4. Estimate η by considering the obtained k.

The heuristic procedure introduced in Gomes et al. ([15] 2013), searches for the

supposed stable region encompassing the best k to be estimated. More precisely, we need

first to obtain the minimum value j0, such that the rounded values to j decimal places

of H(k), 1 ≤ k < n, denoted H(k; j) are not all equal. Identify the set of values of k
associated to equal consecutive values of H(k; j0). Consider the set with largest range

` := kmax − kmin. Take all the estimates H(k; j0 + 2) with kmax ≤ k ≤ kmin, i.e., the

estimates with two additional decimal points and calculate the mode. Consider K the set

of k-values corresponding to the mode. Take H(k̂), with k̂ being the maximum of K.

Since it was specially designed for reduced-bias estimators, we shortly referred it as RB

method hereinafter.

Frahm et al. ([13] 2005) also presented a heuristic procedure that can be applied to all

estimators depending on a number k of rv’s whose choice bears the mentioned trade-off

between bias and variance. Indeed is was developed within the estimation of the TDC λ
defined in (1.1). It was adapted to the Hill estimator in Ferreira ([11, 12] 2014, 2015) as

follows:
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1. Smooth the Hill plot (k,H(k)) by taking the means of 2b + 1 successive points,

H(1), ..., H(n− 2b), with bandwidth b = bw × nc.

2. Define the regions pk = (H(k), ..., H(k+m− 1)), k = 1, ..., n− 2b−m+1, with

length m = b
√
n− 2bc. The algorithm stops at the first region satisfying

k+m−1∑

i=k+1

∣∣H(i)−H(k)
∣∣ ≤ 2s,

where s is the empirical standard-deviation of H(1), ..., H(n− 2b).

3. Consider the chosen plateau region pk∗ and estimate η as the mean of the values of

pk∗ (consider the estimate zero if no plane region fulfills the stopping condition).

The estimation of η through the plateau method was analyzed in Ferreira and Silva

([10] 2014) with respect to the sensibility of the bandwidth. The value w = 0.005 seems

a reasonable choice (thus each moving average in step 1. consists in 1% of the data), also

suggested in Frahm et al. ([13] 2005). In the sequel it will be referred as plateau method

(in short PLAT).

Both RB and PLAT are simultaneously graphical and free-assumption methods since

they are based on the search of a plane region of the estimator’s plot that presumably con-

tains the best sample fraction k to be estimated through a totally “ad-hoc” procedure. The

sumplot is also a graphical method and the remaining procedures are neither graphical

nor free-assumption.

3 Simulation study

In this section we compare through simulation the performance of the methods described

above within the estimation of η through the under study estimators Hill in (1.4) and

corrected Hill in (1.6).

We have generated 100 runs of samples of sizes n = 100, 1000, 5000 from the follow-

ing models:

• Bivariate Normal distribution (η = (1+ρ)/2; see, e.g., Draisma et al. [6] 2004); we

consider correlation ρ = −0.2 (η = 0.4), ρ = 0.2 (η = 0.6) and ρ = 0.8 (η = 0.9);

we use notation, respectively, N(−0.2), N(0.2) and N(0.8).

• Bivariate t-Student distribution tν with correlation coefficient given by ρ 6= −1

(λ = 2Ftν+1

(
−
√
(ν + 1)(1− ρ)/(1 + ρ)

)
, see Embrechts et al. [9] 2002; we

have λ > 0 and thus η = 1); we consider ν = 4 and ρ = 0.25 (λ = 0.1438) and

ν = 1 and ρ = 0.75 (λ = 0.6464); we use notation, respectively, t4 and t1.

• Bivariate extreme value distribution with a asymmetric-logistic dependence func-

tion `(x, y) = (1 − a1)x + (1 − a2)y + ((a1x)
1/α + (a2y)

1/α)α, with x, y ≥ 0,
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dependence parameter α ∈ (0, 1] and asymmetric parameters a1, a2 ∈ (0, 1] (λ =
2− l(1, 1), see Beirlant et al. [1] 2004; we have λ > 0 and thus η = 1); we consider

α = 0.7 and a1 = 0.4, a2 = 0.2 (λ = 0.1010) and α = 0.3 and a1 = 0.6, a2 = 0.8
(λ = 0.5182); we use notation, respectively, AL(0.7) and AL(0.3).

• Farlie-Gumbel-Morgenstern distribution with dependence 0.5 (η = 0.5, see Dutang

et al. [8] 2014); we use notation FGM(0.5).

• Frank distribution with dependence 2 (η = 0.5, see Dutang et al. [8] 2014); we use

notation Fr(2).

Observe that the case N(0.8) is an asymptotic tail independent model close to tail

dependence since η = 0.9 ≈ 1. On the other hand, the cases t4 and AL(0.7) are tail

dependent cases (η = 1) near asymptotic tail independence since λ = 0.1438 ≈ 0 and λ =
0.1010 ≈ 0, respectively. We consider these examples in order to assess the robustness of

the methods in border cases.

In Figures 2 and 3 are plotted, respectively, the results of the simulated values of

the absolute bias and root mean squared error (rmse), for the Hill and corrected Hill

estimators, in the case n = 1000. All the results are presented in Table 1 concerning

the Hill estimator and Table 2 with respect to the corrected Hill. Observe that this latter

case requires the estimation of additional second order parameters (β and ρ). To this end,

we have followed the indications in Caeiro et al. ([4] 2009). For the ρ estimation, there

was an overall best performance whenever it was taken fixed at value −1, leading to the

reported results.

The largest differences between Hill and corrected Hill can be noticed in the above

mentioned border cases, with the corrected one presenting lower absolute bias and rmse.

The other models also show this difference but in a small amount. We remark that we are

working with the minimum of Pareto rv’s and the Hill estimator is unbiased in the Pareto

case. The FGM and Frank models behave otherwise with a little lower absolute bias and

rmse within the Hill estimator, for either estimated or several fixed values tried for ρ.

The failure cases in the DK method (column “NF” of Tables 1 and 2) correspond to

an estimate of k out of the range {1, . . . , n − 1}, which were ignored in the results. It

sets up the worst performance, which may be justified by the fact that the class of models

underlying the scope of application of this method excludes the simple Pareto law.

The corrected Hill exhibits better results in general, particularly for methods KOPT,

PLAT and AMSE, followed by SP and RB, in large sample sizes (n¿=1000). The PLAT

procedure also performs well with the Hill estimator unlike the SP.

For n = 100, we have good results within RB and SP based on corrected Hill. Once

again, the PLAT method behaves well in both estimators.

The border cases of weak tail dependence (t4 and AL(0.7)) are critical throughout all

evaluated procedures and estimators. On the other hand, the methods are robust in the

border case of tail independence near dependence expressed in model N(0.8).

4 Applications

In this section we illustrate the methods with three datasets analyzed in literature:
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Figure 2: Simulated results of the absolute bias of Hill (full) and corrected Hill (dashed), for

n = 1000, of the models (left-to-right and top-to-down): N(−0.2), N(0.2), N(0.8), t4, t1,

AL(0.3), AL(0.7), FGM(0.5) and Fr(2).

• I: The data consists of closing stock index levels of S&P 500 from the US and FTSE

100 from the UK, over the period 11 December 1989 to 31 May 2000, totalizing

2733 observed pairs (see, e.g., Poon et al. ([23] 2003)).

• II: The wave-surge data corresponding to 2894 paired observations collected during

1971-77 in Cornwall (England); it was analyzed in Coles and Tawn ([5] 1994) and

later also in Ramos and Ledford ([22] 2009) under a parametric view.

• III: The Loss-ALAE data analyzed in Beirlant et al. ([2] 2004; see also references

therein) consisting of 1500 pairs of registered claims (in USD) corresponding to an
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Figure 3: Simulated results of the rmse of Hill (full) and corrected Hill (dashed), for

n = 1000, of the models (left-to-right and top-to-down): N(−0.2), N(0.2), N(0.8), t4, t1,

AL(0.3), AL(0.7), FGM(0.5) and Fr(2).

indemnity payment (loss) and an allocated loss adjustment expense (ALAE).

The respective scatter-plots are placed in Figure 4. For the US and UK stock mar-

ket returns, the largest values in each tail for one variable correspond to reasonably large

values of the same sign for the other variable, hinting an asymptotic independence but

not exactly independence. In the wave-surge data, the dependence seems a bit more per-

sistent within large values, as well as in Loss-ALAE data. The Hill and corrected Hill

sample paths of η estimates are pictured in Figure 5. Table 3 reproduces the estimates

obtained with each method and estimators under study. The estimation results found in

literature for the financial (I), environmental (II) and insurance datasets (III) are respec-
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tively approximated by 0.731, 0.85 and 0.9. The results seem to be in accordance with the

simulation study.
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Figure 4: From left to right: scatter-plots of datasets I, II and III.
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Figure 5: From left to right: sample paths of Hill (full;black) corrected Hill (dashed;grey) of

datasets I, II and III.

5 Discussion

In this paper we have analyzed some simple estimation methods for the coefficient of

asymptotic tail independence, with some of them revealing promising results. However,

the choice of the estimator is not completely straightforward. It can be seen from simula-

tion results that the ordinary Hill estimator may be still preferred over the corrected one

in some situations. Also in boundary cases of tail dependence near independence, there

are still some worrying errors to correct. These will be topics of a future research.



112 Marta Ferreira

Acknowledgment

The author wishes to thank the reviewers for their constructive and valuable comments

that have improved this work. This research was financed by Portuguese Funds through

FCT - Fundação para a Ciência e a Tecnologia, within the Project UID/MAT/00013/2013

and by the research centre CEMAT (Instituto Superior Técnico, Universidade de Lisboa)
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a SP KOPT AMSE RB DK PLAT

n = 100 abias rmse k abias rmse k abias rmse k abias rmse k abias rmse k NF abias rmse

N(−0.2) 0.0449 0.0590 90 0.0387 0.1232 12 0.0258 0.0579 68 0.0286 0.0470 69 0.0350 0.2883 3 4 0.0111 0.0780

N(0.2) 0.0574 0.0698 89 0.1202 0.2002 15 0.0878 0.1224 64 0.0532 0.0714 75 0.0388 0.4878 4 2 0.0384 0.1042

N(0.8) 0.1372 0.1460 93 0.1881 0.2726 16 0.1935 0.2402 77 0.1323 0.1397 75 0.1320 0.4158 8 7 0.1133 0.1440

t4 0.4187 0.4223 96 0.4121 0.4458 20 0.4309 0.4362 79 0.4155 0.4188 76 0.3007 0.5849 3 5 0.3539 0.3734

t1 0.2266 0.2323 96 0.1605 0.2297 14 0.2318 0.2344 95 0.2144 0.2199 76 0.1923 0.3481 12 5 0.1300 0.1507

AL(0.7) 0.4642 0.4658 94 0.4625 0.4895 18 0.4784 0.4863 92 0.4572 0.4594 78 0.3447 0.6026 4 3 0.4199 0.4342

AL(0.3) 0.2825 0.2855 98 0.1686 0.2364 17 0.2877 0.3024 73 0.2498 0.2556 74 0.1991 0.3459 14 6 0.1585 0.1864

FGM(0.5) 0.0383 0.0578 90 0.0507 0.1683 12 0.0163 0.1117 56 0.0362 0.0585 75 0.0508 0.3649 6 8 0.0302 0.1052

Fr(2) 0.0805 0.0954 88 0.2065 0.1762 13 0.0320 0.1265 61 0.0839 0.0960 77 0.0041 0.3391 5 5 0.0764 0.1293

n = 1000 abias rmse k abias rmse k abias rmse k abias rmse k abias rmse k NF abias rmse

N(−0.2) 0.0425 0.0546 819 0.0059 0.0515 121 0.0378 0.0474 652 0.0437 0.0455 755 0.0242 0.3225 48 2 0.0247 0.0399

N(0.2) 0.0462 0.0642 826 0.0370 0.0687 171 0.0519 0.0690 777 0.0394 0.0432 754 0.0223 0.3651 39 0 0.0297 0.0452

N(0.8) 0.1178 0.1266 866 0.0832 0.0907 277 0.1231 0.1239 920 0.0926 0.0940 625 0.0991 0.3588 84 1 0.0716 0.0784

t4 0.3921 0.4013 893 0.3303 0.3339 220 0.3703 0.3737 460 0.4056 0.4061 822 0.0431 0.6092 29 1 0.3114 0.3172

t1 0.1975 0.2095 933 0.0777 0.0896 238 0.1530 0.1562 509 0.1886 0.1906 779 0.0479 0.1042 78 0 0.0554 0.0664

AL(0.7) 0.4518 0.4544 941 0.3906 0.3931 197 0.4245 0.4270 592 0.4392 0.4398 643 0.1613 0.6207 45 4 0.3827 0.3864

AL(0.3) 0.2369 0.2597 885 0.1282 0.1356 303 0.1821 0.1859 496 0.1940 0.1945 580 0.0800 0.1506 108 1 0.0868 0.0961

FGM(0.5) 0.0358 0.0430 846 0.0303 0.0525 178 0.0429 0.0600 630 0.0487 0.0516 762 0.0216 0.3347 50 0 0.0415 0.0532

Fr(2) 0.0630 0.0859 696 0.0305 0.0791 132 0.0409 0.1136 405 0.0952 0.0963 786 0.0380 0.3451 50 3 0.0691 0.0795

n = 5000 abias rmse k abias rmse k abias rmse k abias rmse k abias rmse k NF abias rmse

N(−0.2) 0.0485 0.0515 4369 0.0217 0.0280 629 0.0424 0.0445 3353 0.0399 0.0406 3135 0.0920 0.3383 572 1 0.0214 0.0271

N(0.2) 0.0486 0.0490 4804 0.0288 0.0346 847 0.0410 0.0422 3684 0.0384 0.0391 3590 0.0601 0.4406 402 1 0.0261 0.0330

N(0.8) 0.1253 0.1261 4902 0.0725 0.0745 1343 0.1021 0.1043 3357 0.0907 0.0915 3052 0.0696 0.2242 737 0 0.0585 0.0625

t4 0.4103 0.4117 4853 0.2709 0.2745 548 0.2746 0.2829 648 0.4106 0.4107 4418 0.0636 0.4472 34 1 0.2653 0.2688

t1 0.2075 0.2090 4902 0.0499 0.0543 1062 0.0804 0.0843 1442 0.2039 0.2043 4573 0.0209 0.0393 235 0 0.0201 0.0328

AL(0.7) 0.4594 0.4595 4999 0.3428 0.3448 457 0.3558 0.3633 1178 0.4411 0.4413 3222 0.1898 0.5659 20 2 0.3511 0.3534

AL(0.3) 0.2694 0.2712 4950 0.0956 0.0989 969 0.1100 0.1137 1101 0.1989 0.1998 3024 0.0499 0.0641 298 0 0.0529 0.0642

FGM(0.5) 0.0391 0.0422 4562 0.0277 0.0387 705 0.0415 0.0460 2053 0.0487 0.0494 3655 0.0421 0.3120 190 0 0.0313 0.0379

Fr(2) 0.0831 0.0842 4854 0.0620 0.0684 617 0.0862 0.0926 1590 0.1027 0.1030 3650 0.0035 0.2501 286 0 0.0692 0.0738

Table 1: Simulation results from Hill estimator, where abias denotes the absolute bias, NF the number of fails and k correspond to the mean of

the k values obtained in the 100 runs.
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SP KOPT AMSE RB DK PLAT

n = 100 abias rmse k abias rmse k abias rmse k abias rmse k abias rmse k NF abias rmse

N(−0.2) 0.0186 0.0653 91 0.0427 0.1287 12 0.0032 0.0738 57 0.0137 0.0603 74 0.0416 0.2880 2 5 0.0076 0.0795

N(0.2) 0.0164 0.0977 90 0.1085 0.2044 15 0.0458 0.1295 58 0.0202 0.0961 74 0.0514 0.4604 3 1 0.0241 0.1130

N(0.8) 0.0594 0.1066 93 0.1717 0.2675 17 0.1014 0.1860 66 0.0658 0.1050 77 0.1025 0.4099 7 6 0.0959 0.1436

t4 0.3446 0.3618 96 0.3846 0.4268 20 0.3649 0.3810 66 0.3566 0.3704 71 0.2871 0.6015 3 2 0.3361 0.3610

t1 0.0952 0.1261 96 0.1369 0.2112 15 0.1104 0.1337 78 0.1118 0.1387 75 0.1437 0.3297 5 0 0.0850 0.1215

AL(0.7) 0.3995 0.4123 93 0.4528 0.4846 18 0.4245 0.4410 60 0.4122 0.4227 76 0.3313 0.5980 4 4 0.4046 0.4237

AL(0.3) 0.0437 0.1355 96 0.1187 0.2105 21 0.0781 0.1698 66 0.0609 0.1418 71 0.1537 0.3491 7 3 0.0865 0.1519

FGM(0.5) 0.0659 0.1121 89 0.0439 0.1749 13 0.0199 0.1345 55 0.0565 0.1036 72 0.0468 0.3775 3 8 0.0393 0.1170

Fr(2) 0.1237 0.1549 88 0.0199 0.1794 13 0.0733 0.1718 58 0.1210 0.1482 73 0.0048 0.3401 4 7 0.0912 0.1499

n = 1000 abias rmse k abias rmse k abias rmse k abias rmse k abias rmse k NF abias rmse

N(−0.2) 0.0165 0.0357 819 0.0008 0.0514 120 0.0119 0.0495 463 0.0204 0.0286 948 0.0103 0.3473 9 2 0.0206 0.0367

N(0.2) 0.0200 0.0539 808 0.0305 0.0662 169 0.0273 0.0608 515 0.0179 0.0342 913 0.0432 0.3660 18 1 0.0222 0.0442

N(0.8) 0.0353 0.0552 848 0.0545 0.0674 253 0.0450 0.0505 527 0.0359 0.0438 837 0.1318 0.4158 23 7 0.0514 0.0622

t4 0.3255 0.3343 893 0.3061 0.3109 197 0.3275 0.3317 296 0.3471 0.3489 838 0.0806 0.6097 23 0 0.3042 0.3100

t1 0.0514 0.0680 924 0.0278 0.0474 238 0.0525 0.0617 331 0.0667 0.0731 827 0.1303 0.2741 54 2 0.0276 0.0439

AL(0.7) 0.3937 0.3969 941 0.3751 0.3786 183 0.3920 0.3948 365 0.4009 0.4023 935 0.1170 0.6324 14 5 0.3781 0.3817

AL(0.3) 0.0063 0.0538 857 0.0371 0.0572 210 0.0610 0.1185 241 0.0239 0.0409 797 0.1388 0.2870 42 2 0.0413 0.0559

FGM(0.5) 0.0547 0.0649 846 0.0356 0.0572 180 0.0617 0.0671 600 0.0657 0.0698 904 0.0288 0.3346 42 0 0.0446 0.0585

Fr(2) 0.0854 0.1104 668 0.0371 0.0841 140 0.0845 0.1253 516 0.1172 0.1200 814 0.0442 0.3355 62 1 0.0729 0.0843

n = 5000 abias rmse k abias rmse k abias rmse k abias rmse k abias rmse k NF abias rmse

N(−0.2) 0.0199 0.0240 4368 0.0156 0.0248 584 0.0206 0.0254 1823 0.0208 0.0225 4686 0.0520 0.3914 59 0 0.0200 0.0248

N(0.2) 0.0173 0.0223 4804 0.0223 0.0304 865 0.0193 0.0232 2720 0.0159 0.0205 4766 0.0292 0.4502 71 1 0.0212 0.0289

N(0.8) 0.0324 0.0346 4902 0.0458 0.0495 1110 0.0481 0.0502 1291 0.0308 0.0337 4466 0.0992 0.4592 78 3 0.0475 0.0521

t4 0.3349 0.3360 4853 0.2495 0.2535 454 0.2549 0.2620 487 0.3447 0.3451 3940 0.1093 0.5322 39 2 0.2666 0.2696

t1 0.0446 0.0473 4901 0.0008 0.0191 747 0.0127 0.0216 979 0.0535 0.0566 3782 0.0849 0.2497 311 2 0.0032 0.0214

AL(0.7) 0.3967 0.3971 4999 0.3303 0.3325 397 0.3210 0.3279 465 0.4003 0.4007 4203 0.1226 0.6323 26 3 0.3509 0.3529

AL(0.3) 0.0157 0.0260 4902 0.0315 0.0401 550 0.0414 0.0485 633 0.0194 0.0292 4520 0.1619 0.3958 210 1 0.0355 0.0427

FGM(0.5) 0.0561 0.0602 4562 0.0316 0.0431 727 0.0511 0.0567 2440 0.0619 0.0634 4196 0.0484 0.2880 218 0 0.0328 0.0399

Fr(2) 0.1186 0.1208 4854 0.0693 0.0758 691 0.1225 0.1162 2431 0.1264 0.1270 4100 0.0333 0.2429 241 1 0.0703 0.0757

Table 2: Simulation results from corrected Hill estimator, where abias denotes the absolute bias, NF the number of fails and k correspond to the

mean of the k values obtained in the 100 runs.
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H(k) I k II k III k
DK 0.6510 21 0.8255 83 0.7827 78

SP 0.6025 2592 0.5922 2893 0.6584 1499

KOPT 0.6733 744 0.9137 738 0.8444 135

AMSE 0.6494 955 0.7076 1244 0.6850 1172

RB 0.6041 2477 0.5967 2772 0.7428 708

PLAT 0.7148 – 0.8755 – 0.8110 –

CH(k) I k II k III k
DK 0.7654 5 0.4521 1 0.7044 27

SP 0.6725 2592 0.8581 2893 0.8671 1499

KOPT 0.7070 585 0.8991 412 0.8661 176

AMSE 0.6925 726 0.8997 596 0.8386 678

RB 0.6652 2264 0.8300 2040 0.8671 1499

PLAT 0.7261 – 0.8908 – 0.8524 –

Table 3: Estimates of η and respective values k, of datasets I, II and III.


