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X bar control chart for non-normal symmetric

distributions

Kristina Veljkovic 1

Abstract

In statistical quality control, X bar control chart is extensively used to monitor a

change in the process mean. In this paper, X bar control chart for non-normal sym-

metric distributions is proposed. For chosen Student, Laplace, logistic and uniform

distributions of quality characteristic, we calculated theoretical distribution of stan-

dardized sample mean and fitted Pearson type II or type VII distributions. Width of

control limits and power of the X bar control chart were established, giving evidence

of the goodness of fit of the corresponding Pearson distribution to the theoretical dis-

tribution of standardized sample mean. For implementation of X bar control chart in

practice, numerical example of construction of a proposed chart is given.

1 Introduction

The X bar chart is extensively used in practice to monitor a change in the process mean.

It is usually assumed that measured quality characteristic has normal or approximately

normal distribution. On the other hand, occurrence of non-normal data in industry is quite

common (see Alloway and Raghavachari, 1991; Janacek and Meikle, 1997). Violation of

normality assumption results in incorrect control limits of control charts (Alwan, 1995).

Misplaced control limits lead to inappropriate charts that will either fail to detect real

changes in the process or which will generate spurious warnings when the process has not

changed.

In the case of non-normal symmetric distribution of quality characteristics, no rec-

ommendations, except the use of the normal distribution, are given in the quality control

literature. Approximation of the distribution of sample mean with normal distribution is

based on the central limit theorem, but in practice small sample sizes are usually used.

We will consider four types of non-normal symmetric distributions of quality char-

acteristic: Student, Laplace, logistic and uniform distributions. These distributions are

chosen because of their applications in various disciplines (economics, finance, engineer-

ing, hydrology, etc., see for instance Ahsanullah, et al., 2014; Balakrishnan, 1992; Kotz

et al., 2001). For each of these distributions, we calculated theoretical distribution of the

standardized sample mean (or its best approximation) and approximated it with Pearson

type II or type VII distributions. Pearson system of distributions is known to provide

approximations to a wide variety of observed distributions (Johnson et al., 1994).
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It is presumed that a process begins in in-control state with mean µ0 and that single

assignable cause of magnitude δ results in a shift in the process mean from µ0 to either

µ0 − δσ or µ0 + δσ, where σ is the process standard deviation (Montgomery, 2005). It is

also assumed that the standard deviation remains stable. Center line of the X bar chart is

set at µ0 and upper and lower control limits, respectively, µ0 + kσ/
√
n and µ0 − kσ/

√
n,

where n represents the sample size and k width of control limits. Samples of size n are

taken from the process and the sample mean is plotted on the X bar chart. If a sample mean

exceeds control limits, it is assumed that some shift in the process mean has occurred and

a search for the assignable cause is initiated.

The rest of the paper is organized as follows. In Sections 2, 3 and 4, respectively,

descriptions of chosen distributions of quality characteristic, distributions of standardized

sample mean and Pearson types II and VII distributions are given. Construction of the X

bar control chart and its power are examined in Section 5, along with the comparisons of

theoretical distribution of sample mean with the corresponding Pearson distribution. In

Section 6, implementation of proposed X bar chart is considered. Finally, conclusions are

drawn in Section 7.

2 Distribution of quality characteristic

We considered four types of non-normal symmetric distributions of quality characteristic

X: Student distribution t(10), standard Laplace L(1) distribution and logistic distribution

LGS(1) (see Johnson et al. 1994; Johnson et al. 1995) as representatives of symmetric

distributions with heavier tails than normal distribution (Figure 1) and uniform U(0, 1)
distribution as a representative of symmetric distributions with lighter tails than normal

distribution. For simplicity, we have chosen standard forms of all four distributions.

Figure 1: Probability density functions of Student t(10), Laplace L(1), logistic LGS(1)
and standard normal N(0, 1) distributions
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Distribution fX µ σ2 α4

t(10) 315
256

√
10

(

1 + x2

10

)−5.5

, x ∈ R 0 1.25 4

L(1) 1
2
e−|x| x ∈ R 0 2 6

LGS(1) e−x

(1+e−x)2
x ∈ R 0 π2

3
4.2

U(0, 1) x, x ∈ [0, 1] 0.5 1
12

1.8

Table 1: Chosen distributions of quality characteristics

Distributions are given in Table 1 by their probability density function fX , mean µ,

variance σ2 = V ar(X) and kurtosis α4 = E(X−E(X))4

σ4 . As all chosen distributions are

symmetric around the zero, skewness α3 =
E(X−E(X))3

σ
3
2

= 0.

3 Distribution of standardized sample mean

For chosen distributions of quality characteristic, we will derive the distribution of stan-

dardized sample mean Tn = X−µ
σ

√
n. As all chosen distributions are symmetric, skew-

ness of standardized sample mean will also be equal to 0.

3.1 Sample from Student’s distribution

Witkowský (2001, 2004) proposed a method for numerical evaluation of the distribution

function of a linear combination of independent Student variables. The method is based

on the inversion formula which leads to the one-dimensional numerical integration.

Let (X1, X2, . . . , Xn) be a sample from Student t(ν) distribution. Further, let Y =
∑n

k=1 Xk be sum of these variables and φXk
(t) denote the characteristic function of Xk.

The characteristic function of Y is

φY (t) =
n
∏

k=1

φXk
(t) =

n
∏

k=1

1

2
ν

2
−1Γ(ν

2
)

(

ν
1

2 |t|
)

ν

2

Kν/2

(

ν
1

2 |t|
)

,

where Kα(z) denotes modified Bessel function of the second kind.

The cumulative distribution function FY (y) of random variable Y is, according to the

inversion formula due to Gil-Pelaez (1951), given by

FY (y) =
1

2
+

1

π

∫ ∞

0

sin (ty)φY (t)

t
dt (3.1)

For any chosen y algorithm tdist in R package tdist (Witkowský and Savin, 2005)

evaluates the integral in (3.1) by multiple p-points Gaussian quadrature over the real inter-

val t ∈ (0, 10π). The whole interval is divided in m subintervals and the integration over

each subinterval is done with p-points Gaussian quadrature which involves base points
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bij , and weight factors wij , i = 1, 2, . . . , p, j = 1, 2, . . . ,m. So,

FY (y) ≈
1

2
+

1

π

m
∑

j=1

p
∑

i=1

sin (bijy)

bij
wijφY (bij).

Then, cumulative distribution function of standardized sample mean is equal to

FTn
(t) = FY

(√
5n

2
t

)

, t ∈ R.

Kurtosis of Tn is equal to α4,Tn
= 3 + 1

n

3.2 Sample from Laplace distribution

Let (X1, X2, . . . , Xn) be a sample from standard Laplace L(1) distribution. Difference of

two independent random variables with standard exponential ε(1) distribution has stan-

dard Laplace distribution. Further, standard exponential distribution is gamma distribu-

tion, Γ(1, 1). Sum of n independent variables with Γ(1, 1) distribution is gamma distri-

bution Γ(n, 1). In that way, we conclude that sum Y of n independent random variables

X1, X2, . . . , Xn with standard Laplace distribution can be written as the difference of

two random variables with gamma distribution Γ(n, 1) which is called bilateral gamma

distribution.

Bilateral gamma distribution is symmetric around 0 (Küchler and Tappe, 2008), with

cumulative distribution function for y > 0

FY (y) =
1

2
+

1

2n
· 1

(n− 1)!

n
∑

k=0

akγ(k + 1, y)

where the coefficients (ak)k=0,...,n−1 are given by

ak =

(

n− 1

k

)

1

2n−1−k

n−2−k
∏

l=0

(n+ l), an−1 = 1.

and γ(n, y) is incomplete gamma function.

Then, cumulative distribution function of standardized sample mean is equal to

FTn
(t) = FY

(√
2nt
)

, t ∈ R.

Kurtosis of standardized sample mean is equal α4,Tn
= 3 + 3

n
.

3.3 Sample from logistic distribution

Let (X1, X2, . . . , Xn) be a random sample from logistic LGS(1) distribution. Insofar, the

best approximation of the distribution of standardized sample mean Tn is given by Gupta

and Han (1992). They considered the Edgeworth series expansions up to order n−3 for
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the distribution of the standardized sample mean. Cumulative distribution function of Tn

is given by

FTn
(t) ≈ Φ(t)− ϕ(t)

(

1

n

(

1

4!

6

5
H3(t)

)

+
1

n2

(

1

6!

48

7
H5(t) +

+
35

8!

(

6

5

)2

H7(t)

))

+
1

n3

(

1

8!

432

5
H7(t) +

210

10!

48

7

6

5
H9(t) +

+
5775

12!

(

6

5

)3

H11(t)

))

, t ∈ R,

where ϕ(·) and Φ(·) are standard normal pdf and cdf and Hj(x) is the Hermite polyno-

mial.

Kurtosis of standardized sample mean is α4,Tn
= 3 + 1.2

n
.

3.4 Sample from uniform distribution

Let (X1, X2, . . . , Xn) be a random sample from uniform U(0, 1) distribution. The sum

Y =
∑n

k=1 Xk has Irwin-Hall distribution (Johnson et al., 1995) with cumulative distri-

bution function

FY (y) =
1

2
+

1

2n!

n
∑

k=0

(−1)k
(

n

k

)

sgn(y − k)(y − k)n, x ∈ R.

Then, standardized sample mean has cumulative distribution function equal to

FTn
(t) = FY

((

t√
12n

+
1

2

)

n

)

, t ∈ R.

Kurtosis of standardized sample mean is α4,Tn
= 3− 1.2

n
.

4 Symmetric Pearson distributions

4.1 Pearson type II distribution

Pearson type II distribution can be used for approximation of the distribution of random

variable with skewness α3 = 0 and kurtosis α4 < 3 (Johnson et al., 1994). Cumulative

distribution function of Pearson type II distribution is equal to

F (t) = I t−λ

s

(a, a), 0 <
t− λ

s
< 1,

where

λ = −
√

2α4

3− α4

, s = 2

√

2α4

3− α4

, a =
5α4 − 9

2(3− α4)
+ 1, (4.1)

It(a, b) =
Bt(a,b)
B(a,b)

, B(a, b) is beta function and Bt(a, b) is incomplete beta function.

In other words, random variable T−λ
s

has beta distribution B(a, a).
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4.2 Pearson type VII distribution

Pearson type VII distribution can be used for approximation of the distribution of random

variable with skewness α3 = 0 and kurtosis α4 > 3 (Johnson et al., 1994). Cumulative

distribution function of Pearson type VII distribution is equal to

F (t) =
1

2
Ia2/(a2+t2)

(

m− 1

2
,
1

2

)

, t < 0

and

F (t) = 1− 1

2
Ia2/(a2+t2)

(

m− 1

2
,
1

2

)

, t > 0,

where

m =
5α4 − 9

2(α4 − 3)
, a =

√

2α4

α4 − 3
. (4.2)

5 Design of X bar control chart

For sample sizes n = 3, 4, . . . , 10, we calculated theoretical distribution of the standard-

ized sample mean of considered distributions, using results from Section 3 and then we

approximated it with Pearson type II distribution in the case of uniform distribution and

with Pearson type VII distribution in the case of Student, Laplace and logistic distribu-

tions. Parameters of the fitted Pearson types II and VII distributions are calculated using

formulas (4.1) and (4.2). Code for all calculations was written, by the author, in statistical

software R and is available as supplementary code on the web site of the Journal. Width

of control limits of the X bar control chart is calculated from

α = 1− P{µ0 − k
σ√
n
≤ X ≤ µ0 + k

σ√
n
|µ = µ0} = 2(1− FTn

(k)), (5.1)

where FTn
is cumulative distribution function of standardized sample mean, using Brent’s

root-finding method (Brent, 1973). Same procedure was followed for both the theoretical

distribution of standardized sample mean and corresponding Pearson distribution.

Control limits of the X bar control chart for non-normal symmetric distributions are

calculated for specified probability 0.0027 of type I error, in analogy with X bar control

chart for normal distribution. When quality characteristics is normally distributed, the

probability that sample mean falls outside three standard deviations from the center line

is 0.0027, for in-control process. These are so called three-sigma control limits (here

sigma refers to the standard deviation of sample mean) and they are frequently used in

construction of X bar control chart (Montgomery, 2005).

Calculated widths of control limits, for considered distributions of quality character-

istic, sample sizes n = 3, 4, . . . , 10, probability of false alarm α = 0.0027, for theoretical

distribution of the standardized sample mean and Pearson types II and VII distributions,

are given in Table 2.

As it can be seen in the Table 2, the values of the width of the control limits calcu-

lated from theoretical distribution and corresponding Pearson distribution are very close,

i.e. corresponding Pearson distribution fits very well to the theoretical distribution of the
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Width of control limits

Sample Student t(10) Laplace L(1) Logistic LGS(1) Uniform U(0, 1)
size Theor. Pearson Theor. Pearson Theor. Pearson Theor. Pearson

n = 3 3.21966 3.22227 3.54221 3.53915 3.25580 3.26074 2.59834 2.65308

n = 4 3.16998 3.17156 3.43224 3.43628 3.20035 3.20234 2.72926 2.74902

n = 5 3.13867 3.13966 3.36034 3.36606 3.16405 3.16527 2.79650 2.80355

n = 6 3.11712 3.11775 3.30939 3.31520 3.13877 3.13966 2.83511 2.83866

n = 7 3.10136 3.10178 3.27130 3.27668 3.12021 3.12091 2.86060 2.86314

n = 8 3.08934 3.08962 3.24168 3.24652 3.10602 3.10660 2.87932 2.88118

n = 9 3.07987 3.08005 3.21796 3.22227 3.09482 3.09531 2.89366 2.89502

n = 10 3.07221 3.07233 3.19852 3.20234 3.08577 3.08619 2.90489 2.90597

Table 2: Width of control limits of X bar control chart

standardized sample mean. On the other hand, normal approximation would give value

of k = 2.99998, for all n and all distributions of quality characteristics.

Now, we are interested to see what is the power of X bar control charts for detecting

shifts δ = 0.5, 1.0, . . . , 3.0, for calculated width of control limits. Power of X bar control

chart for detecting shifts from mean µ0 to µ1 = µ0 ± δσ can be calculated from

1− β = 1− P{µ0 − k
σ√
n
≤ X ≤ µ0 + k

σ√
n
|µ = µ1} =

= FTn
(−k − δ

√
n) + FTn

(−k + δ
√
n).

We should note that power of proposed X bar control chart for detecting shift δ = 0
is 0.0027 for all considered distributions and sample sizes, i.e. it maintains probability of

type I error.

Mainly, we want to investigate what is the minimum shift that X bar control chart can

detect with a power of at least 90%.

Calculated power of X bar control chart, for considered distributions of quality char-

acteristic, sample sizes n = 3, 4, . . . , 10, shifts δ = 0.5, 1.0, . . . , 3.0 for both theoreti-

cal distribution of standardized sample mean and corresponding Pearson distribution, are

given in Table 3.

¿From the Table 3, we see that X bar control chart can detect shifts of δ = 1.5 with

power of at least 90% for sample sizes of n = 9 and greater for all considered distri-

butions. In order for the X bar chart to detect shifts of δ = 2.0 with power of 90% and

greater, it is necessary to take samples of size at least n = 4 for Student, Laplace and logis-

tic distributions and sample sizes of n = 5 and greater for uniform distribution of quality

characteristic. Also, we can once more notice that the corresponding Pearson distribution

approximates the distribution of standardized sample mean rather well. In general, it can

be concluded that X bar control chart can detect shifts of at least δ = 1.5 with power of

90% and greater for non-normal symmetric distribution of quality characteristic.

6 Implementation of proposed X bar control chart

Now we are interested to see how proposed X bar control chart can be implemented in

practice, in case when the distribution function of the quality characteristic is non-normal,
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Theor. Pearson Theor. Pearson Theor. Pearson Theor. Pearson Theor. Pearson Theor. Pearson

t(10) δ = 0.5 δ = 1.0 δ = 1.5 δ = 2.0 δ = 2.5 δ = 3.0
n = 3 0.0110 0.0110 0.0665 0.06620 0.2609 0.2597 0.5998 0.5989 0.8715 0.8711 0.9750 0.9748

n = 4 0.0162 0.0162 0.1175 0.1171 0.4307 0.4300 0.8016 0.8014 0.9661 0.9659 0.9967 0.9967

n = 5 0.0224 0.0224 0.1795 0.1791 0.5871 0.5868 0.9108 0.9107 0.9919 0.9918 0.9996 0.9996

n = 6 0.0296 0.0296 0.2488 0.2484 0.7145 0.7144 0.9625 0.9625 0.9982 0.9982 1 1

n = 7 0.0377 0.0377 0.3218 0.3216 0.8100 0.8100 0.9850 0.9850 0.9996 0.9996 1 1

n = 8 0.0468 0.0468 0.3957 0.3955 0.8775 0.8775 0.9942 0.9942 0.9999 0.9999 1 1

n = 9 0.0566 0.0566 0.4678 0.4677 0.9231 0.9231 0.9979 0.9978 1 1 1 1

n = 10 0.0674 0.0673 0.5363 0.5363 0.9528 0.9528 0.9992 0.9992 1 1 1 1

L(1)
n = 3 0.0077 0.0071 0.0370 0.0355 0.1541 0.1588 0.4642 0.4674 0.8061 0.8014 0.9514 0.9532

n = 4 0.0111 0.0104 0.0718 0.0708 0.3179 0.3207 0.7317 0.7258 0.9433 0.9438 0.9916 0.9921

n = 5 0.0156 0.0148 0.1215 0.1212 0.4973 0.4949 0.8761 0.8740 0.9841 0.9846 0.9986 0.9986

n = 6 0.0209 0.0201 0.1842 0.1842 0.6511 0.6469 0.9452 0.9451 0.9957 0.9958 0.9998 0.9997

n = 7 0.0273 0.0265 0.2561 0.2559 0.7670 0.7638 0.9765 0.9767 0.9989 0.9988 1 0.9999

n = 8 0.0347 0.0339 0.3327 0.3321 0.8487 0.8469 0.9901 0.9903 0.9997 0.9997 1 1

n = 9 0.0430 0.0423 0.4101 0.4089 0.9039 0.90305 0.9960 0.9960 0.9999 0.9999 1 1

n = 10 0.0523 0.0517 0.4850 0.4835 0.9400 0.9397 0.9984 0.9983 1 1 1 1

LGS(1)
n = 3 0.0106 0.0103 0.0619 0.0613 0.2469 0.2460 0.5864 0.5840 0.8653 0.8638 0.9726 0.9726

n = 4 0.0155 0.0153 0.1109 0.1106 0.4178 0.4172 0.7945 0.7935 0.9637 0.9637 0.9962 0.9963

n = 5 0.0215 0.0213 0.1718 0.1718 0.5775 0.5769 0.9072 0.9070 0.9911 0.9911 0.9995 0.9995

n = 6 0.0285 0.0283 0.2409 0.2408 0.7079 0.7074 0.9607 0.9607 0.9979 0.9979 0.9999 0.9999

n = 7 0.0364 0.0363 0.3143 0.3142 0.8056 0.8053 0.9841 0.9842 0.9995 0.9995 1 1

n = 8 0.0452 0.0451 0.3887 0.3886 0.8746 0.8744 0.9938 0.9938 0.9999 0.9999 1 1

n = 9 0.0550 0.0549 0.4616 0.4614 0.9211 0.9211 0.9977 0.9977 1 1 1 1

n = 10 0.0655 0.0655 0.5309 0.5308 0.9515 0.9515 0.9991 0.9991 1 1 1 1

U(0, 1)
n = 3 0.0424 0.0357 0.2022 0.1890 0.4999 0.4794 0.7976 0.7803 0.9575 0.9531 0.9986 0.9976

n = 4 0.0419 0.0397 0.2403 0.2348 0.6030 0.5951 0.8937 0.8898 0.9906 0.9903 1 1

n = 5 0.0470 0.0461 0.2929 0.2909 0.7062 0.7034 0.9527 0.9521 0.9986 0.9985 1 1

n = 6 0.0544 0.0538 0.3533 0.3523 0.7946 0.7934 0.9816 0.9816 0.9999 0.9998 1 1

n = 7 0.0630 0.0626 0.4167 0.4159 0.8629 0.8622 0.9936 0.9936 1 1 1 1

n = 8 0.0726 0.0723 0.4801 0.4794 0.9120 0.9117 0.9980 0.9980 1 1 1 1

n = 9 0.0830 0.0828 0.5416 0.5411 0.9455 0.9453 0.9994 0.9994 1 1 1 1

n = 10 0.0942 0.0941 0.6001 0.5996 0.9673 0.9672 0.9999 0.9998 1 1 1 1

Table 3: Power of X bar control chart
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symmetric but unknown. For fitting Pearson type II or type VII distributions to data, we

need an estimate of kurtosis based on sample of means.

6.1 Measures of sample kurtosis

We have three measures of sample kurtosis

g∗2 =
m4

m2
2

, G∗
2 =

N − 1

(N − 2)(N − 3)
((N + 1)g2 + 6) + 3, b∗2 =

m4

s4
,

where mk are sample central moments.

Joanes and Gill (1998) investigated three measures g2 = g∗2 − 3, G2 = G∗
2 − 3 and

b2 = b∗2 − 3 of sample excess kurtosis. They showed that, generating 100000 samples of

different sizes from Student t5 distribution, g2 generally has the smallest mean-squared

error. We followed the same procedure for measures g∗2 , G∗
2 and b∗2 and generated 100000

samples of different sizes from distributions of standardized sample mean of Student

t(10), Laplace L(1), logistic LGS(1) and uniform U(0, 1) distributions. We confirm

Joanes and Gill’s findings. So, we will use, for calculation of the parameters of Pearson

types II and VII distributions, measure g∗2 as an estimate of sample kurtosis.

6.2 Empirical power of X bar control chart

In this section, we will calculate the empirical power of proposed X bar control chart in

order to investigate its performance in practice. We will take, by Monte Carlo simulations,

m = 25, 50, 100 samples of sizes 3 to 10 from Student t(10), Laplace L(1), logistic

LGS(1) and uniform U(0, 1) distributions. Sample means, as well as estimates of mean

and standard deviation, are calculated. Further, we estimated kurtosis of the distribution of

sample mean with g∗2 . Then, corresponding Pearson type II or type VII distribution is fitted

to m sample means and control limits and power of the X bar control chart are calculated.

This procedure is repeated 100000 times. The average power of the X bar control chart,

for considered distributions, is presented in Table 4 (rounded to four decimal places). It is

expected that sample size and number of groups will affect sample estimates, i.e. values

of parameters of fitted Pearson distribution and therefore power of proposed X bar control

chart.

We compared the values of empirical power for a number of groups m = 25, 50, 100
with theoretical power from Table 3, giving accent on the values of theoretical power of

90% and greater. We made the following conclusions for shift sizes of 1.5 and greater.

Zero difference is present at sample sizes of at least 7 and δ = 3. Absolute difference

between theoretical and empirical power gets smaller as a number of groups and shift

sizes rise. In most of the cases, the difference exists on third to the fourth decimal place.

In other words, proposed X bar control chart has quite satisfactory performance. General

advice for its use in practice would be to choose preferably more than 25 groups of sample

size of 9 and greater, in order to detect shift δ = 1.5 with the power of at least 90%.
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m = 25 m = 50 m = 100
t(10) δ = 0.5 δ = 1.0 δ = 1.5 δ = 2.0 δ = 2.5 δ = 3.0 δ = 0.5 δ = 1.0 δ = 1.5 δ = 2.0 δ = 2.5 δ = 3.0 δ = 0.5 δ = 1.0 δ = 1.5 δ = 2.0 δ = 2.5 δ = 3.0
n = 3 0.0522 0.1857 0.4231 0.7150 0.9163 0.9842 0.0302 0.1369 0.3643 0.6701 0.8986 0.9808 0.0201 0.1073 0.3252 0.6423 0.8873 0.9786

n = 4 0.0688 0.2541 0.5670 0.8627 0.9776 0.9972 0.0424 0.2014 0.5161 0.8378 0.9734 0.9968 0.0292 0.1672 0.4822 0.8219 0.9705 0.9967

n = 5 0.0852 0.3225 0.6914 0.9394 0.9937 0.9993 0.0551 0.2688 0.6495 0.9281 0.9928 0.9993 0.0391 0.2328 0.6233 0.9206 0.9924 0.9993

n = 6 0.1019 0.3909 0.7909 0.9742 0.9980 0.9998 0.0682 0.3376 0.7588 0.9699 0.9979 0.9998 0.0499 0.3014 0.7385 0.9667 0.9978 0.9998

n = 7 0.1180 0.4565 0.8629 0.9888 0.9993 0.9999 0.0821 0.4060 0.8405 0.9872 0.9992 0.9999 0.0615 0.3717 0.8264 0.9863 0.9993 0.9999

n = 8 0.1341 0.5199 0.9128 0.9949 0.9997 1.0000 0.0963 0.4728 0.8984 0.9944 0.9997 1.0000 0.0736 0.4405 0.8886 0.9942 0.9997 1.0000

n = 9 0.1517 0.5820 0.9460 0.9976 0.9999 1.0000 0.1105 0.5360 0.9366 0.9974 0.9999 1.0000 0.0865 0.5075 0.9307 0.9975 0.9999 1.0000

n = 10 0.1679 0.6380 0.9664 0.9988 0.9999 1.0000 0.1253 0.5958 0.9609 0.9987 0.9999 1.0000 0.0996 0.5702 0.9575 0.9988 0.9999 1.0000

L(1)
n = 3 0.0364 0.1420 0.3542 0.6481 0.8828 0.9751 0.0188 0.0930 0.2814 0.5841 0.8531 0.9677 0.0119 0.0655 0.2325 0.5401 0.8326 0.9622

n = 4 0.0528 0.2117 0.5102 0.8263 0.9681 0.9956 0.0292 0.1536 0.4427 0.7886 0.9596 0.9944 0.0187 0.1172 0.3953 0.7628 0.9533 0.9936

n = 5 0.0691 0.2828 0.6481 0.9227 0.9911 0.9990 0.0408 0.2205 0.5913 0.9040 0.9889 0.9988 0.0271 0.1795 0.5532 0.8913 0.9873 0.9986

n = 6 0.0861 0.3539 0.7587 0.9667 0.9972 0.9997 0.0535 0.2912 0.7158 0.9589 0.9966 0.9996 0.0366 0.2483 0.6870 0.9532 0.9962 0.9996

n = 7 0.1030 0.4235 0.8412 0.9856 0.9990 0.9999 0.0665 0.3617 0.8101 0.9824 0.9988 0.9999 0.0471 0.3203 0.7903 0.9802 0.9988 0.9999

n = 8 0.1197 0.4902 0.8986 0.9935 0.9996 0.9999 0.0804 0.4316 0.8776 0.9922 0.9995 0.9999 0.0585 0.3927 0.8645 0.9915 0.9995 1.0000

n = 9 0.1364 0.5542 0.9367 0.9969 0.9998 1.0000 0.0947 0.4993 0.9232 0.9964 0.9998 1.0000 0.0708 0.4638 0.9148 0.9962 0.9998 1.0000

n = 10 0.1536 0.6136 0.9605 0.9984 0.9999 1.0000 0.1100 0.5643 0.9527 0.9982 0.9999 1.0000 0.0833 0.5302 0.9470 0.9982 0.9999 1.0000

LGS(1)
n = 3 0.0495 0.1787 0.4130 0.7058 0.9120 0.9831 0.0284 0.1301 0.3526 0.6590 0.8932 0.9793 0.0185 0.0998 0.3105 0.6281 0.8803 0.9766

n = 4 0.0664 0.2483 0.5599 0.8584 0.9766 0.9970 0.0402 0.1943 0.5060 0.8314 0.9717 0.9966 0.0275 0.1600 0.4711 0.8151 0.9686 0.9964

n = 5 0.0831 0.3177 0.6864 0.9376 0.9935 0.9993 0.0531 0.2625 0.6425 0.9253 0.9924 0.9992 0.0373 0.2255 0.6147 0.9172 0.9918 0.9993

n = 6 0.0996 0.3862 0.7870 0.9734 0.9979 0.9998 0.0662 0.3315 0.7533 0.9685 0.9977 0.9998 0.0481 0.2953 0.7332 0.9654 0.9977 0.9998

n = 7 0.1160 0.4524 0.8605 0.9884 0.9992 0.9999 0.0801 0.4005 0.8370 0.9867 0.9992 0.9999 0.0594 0.3650 0.8222 0.9857 0.9993 0.9999

n = 8 0.1331 0.5175 0.9117 0.9948 0.9997 1.0000 0.0940 0.4675 0.8959 0.9942 0.9997 1.0000 0.0716 0.4348 0.8859 0.9940 0.9997 1.0000

n = 9 0.1500 0.5792 0.9450 0.9975 0.9999 1.0000 0.1085 0.5314 0.9349 0.9973 0.9999 1.0000 0.0847 0.5028 0.9290 0.9973 0.9999 1.0000

n = 10 0.1669 0.6359 0.9658 0.9987 0.9999 1.0000 0.1239 0.5930 0.9602 0.9987 0.9999 1.0000 0.0976 0.5662 0.9565 0.9988 0.9999 1.0000

U(0, 1)
n = 3 0.0788 0.2527 0.5190 0.7998 0.9553 0.9938 0.0573 0.2227 0.4978 0.7874 0.9543 0.9949 0.0463 0.2061 0.4876 0.7826 0.9538 0.9959

n = 4 0.0918 0.3107 0.6377 0.9049 0.9879 0.9988 0.0669 0.2772 0.6157 0.8975 0.9885 0.9991 0.0536 0.2578 0.6054 0.8936 0.9893 0.9994

n = 5 0.1068 0.3731 0.7436 0.9584 0.9965 0.9997 0.0784 0.3372 0.7222 0.9557 0.9969 0.9998 0.0627 0.3157 0.7122 0.9542 0.9975 0.9999

n = 6 0.1219 0.4356 0.8276 0.9823 0.9989 0.9999 0.0914 0.4002 0.8103 0.9819 0.9991 0.9999 0.0733 0.3779 0.8012 0.9818 0.9993 1.0000

n = 7 0.1377 0.4976 0.8886 0.9924 0.9996 1.0000 0.1044 0.4623 0.8759 0.9925 0.9997 1.0000 0.0844 0.4400 0.8685 0.9928 0.9998 1.0000

n = 8 0.1525 0.5554 0.9290 0.9965 0.9998 1.0000 0.1181 0.5226 0.9215 0.9967 0.9999 1.0000 0.0968 0.5023 0.9167 0.9971 0.9999 1.0000

n = 9 0.1690 0.6132 0.9562 0.9983 0.9999 1.0000 0.1318 0.5801 0.9514 0.9985 0.9999 1.0000 0.1094 0.5614 0.9487 0.9987 1.0000 1.0000

n = 10 0.1849 0.6659 0.9729 0.9991 1.0000 1.0000 0.1469 0.6359 0.9706 0.9993 1.0000 1.0000 0.1226 0.6179 0.9691 0.9994 1.0000 1.0000

Table 4: Empirical power of X bar control chart
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6.3 Example

Montgomery (2005) gave data set on thickness of a printed circuit board (in inches), for

25 samples of three boards each.

Figure 2: Boxplot of the thickness data (left graph) and empirical cumulative distribution

function of standardized sample means with fitted Pearson type II distribution (right graph)

As we can see on boxplot (Figure 2, left graph), sample distribution seems symmetric.

We tested symmetry of data distribution using Mira test (Mira, 1999), the Cabilio-Masaro

test (Cabilio and Masaro, 1996) and Miao-Gel-Gastwirth (MGG) test (Miao et al., 2006).

Based on results of all three tests, we can conclude that data distribution is symmetric

(Mira test: Test Statistic = 0.9029, p-value = 0.3666; Cabilio-Masaro test: Test Statistic

= 0.8846, p-value = 0.3764; MGG test: Test Statistic = 1.0162, p-value = 0.3095). R

function symmetry.test for these tests can be found in R package lawstat (Gastwirth et al.,

2015).

Now we will test the normality of the sample distribution using Shapiro-Wilk, Ander-

son-Darling and Lilliefors normality tests (Razali and Wah, 2011). Based on results of

all three tests, we conclude that data distribution is not normal (Shapiro-Wilk test: W

= 0.9589, p-value = 0.01584; Anderson-Darling test: A = 1.4759, p-value = 0.00076;

Lilliefors test D = 0.1467, p-value = 0.00039). We used R function shapiro.test (package

stats) for Shapiro-Wilk test and ad.test, lillie.test from R package nortest (Gross and

Ligges, 2015) for Anderson-Darling and Lilliefors normality tests, respectively.

For each of 25 samples, we calculated sample mean. Mean of all sample means is

equal to X = 0.06295 and this is the estimate of unknown process mean and center line

of X bar control chart. Further, we estimated process standard deviation with mean range,

σ̂ = R = 0.00092. Now, we can calculate standardized sample means and kurtosis of

standardized sample means. We got α̂4 = g∗2 = 2.83154 (measures of sample excess

kurtosis can be found in R package e1071 (Meyer et al., 2014)). So, as the distribution

of standardized sample means is symmetric with kurtosis smaller than 3, we will ap-

proximate its distribution with Pearson type II distribution. We calculated parameters of

distribution using equation (4.1). Empirical distribution function along with fitted Pearson
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type II distribution of standardized sample means is given on Figure 2, right graph.

For probability of false alarm α = 0.0027, we get, using equation (5.1), that width of

control limits is equal to k = 2.83665. Now we may calculate lower and upper control

limits of X bar control chart, LCL = X − k R√
n
= 0.06143, UCL = X + k R√

n
= 0.06448

and construct X bar chart (Figure 3). As we can see on Figure 3, all sample means are

within the control limits and we can conclude that process is in-control and keep the

estimates of unknown process mean, standard deviation, as well as the width of control

limits.

Figure 3: X bar control chart for the thickness data

7 Conclusions

We considered design of the X bar control chart when quality characteristic has one of

the following non-normal symmetric distributions: Student distribution with 10 degrees

of freedom, standard Laplace, standard logistic and standard uniform distributions. We

calculated theoretical distribution of the standardized sample mean (or its best approx-

imation) and approximated it with Pearson type II or type VII distributions. Then we

calculated width of control limits of the X bar chart, which gave evidence of the goodness

of fit of the corresponding Pearson distribution to the theoretical distribution of the stan-

dardized sample mean. Further, we examined the power of X bar control chart in detecting

the shifts. Results suggest that the X bar chart can detect shifts of at least δ = 1.5 with

power of 90% and greater. Then we undertook Monte Carlo study in order to calculate

empirical power of proposed X bar control chart, confirming its quite satisfactory perfor-

mance. Finally, we constructed X bar chart for a given data set, when data distribution is

non-normal and symmetric, but unknown.
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[16] Küchler, U. and Tappe, S. (2008): On the shapes of bilateral Gamma densities.

Statistics & Probability Letters, 78, 2478-2484.



100 Kristina Veljkovic

[17] Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A. and Leisch, F. (2014):

e1071: Misc Functions of the Department of Statistics, TU Wien. R package ver-

sion 1.6-4.

[18] Miao, W., Gel, Y.R. and Gastwirth, J.L. (2006): A New Test of Symmetry about an

Unknown Median, In: Random Walk, Sequential Analysis and Related Topics - A

Festschrift in Honor of Yuan-Shih Chow (Edited by A. Hsiung, C.-H. Zhang and Z.

Ying). World Scientific Publisher, Singapore.

[19] Mira, A. (1999): Distribution-free test for symmetry based on Bonferroni’s measure.

Journal of Applied Statistics, 26, 959-972.

[20] Montgomery, D.C. (2005): Introduction to Statistical Quality Control. Wiley, New

York.

[21] Razali, N. and Wah, Y.B. (2011): Power comparisons of Shapiro-Wilk,

Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical

Modeling and Analytics, 2, 21-33.
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