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Interval Prediction of Order Statistics Based on

Records by Employing Inter-Record Times:

A Study Under Two Parameter Exponential

Distribution
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Abstract

In this note, we propose a parametric inferential procedure for predicting future

order statistics, based on record values, which takes inter-record times into account.

We utilize the additional information contained in inter-record times for predicting

future order statistics on the basis of observed record values from an independent

sample. The two parameter exponential distribution is assumed to be the underlying

distribution.

1 Introduction

Suppose Y1, . . . , Ym are independent and identically distributed (iid) observations from

an absolutely continuous cumulative distribution function (cdf) F , possessing probability

density function (pdf) f . The order statistics of the sample Y1, . . . , Ym, represented by

Y1:m < · · · < Ym:m, are obtained by arranging the sample in an increasing order. Order

statistics have been used in a wide range of applications, including robust statistical esti-

mation, detection of outliers, characterization of probability distributions, goodness-of-fit

tests, entropy estimation, analysis of censored samples, reliability analysis, quality con-

trol and strength of materials. A useful survey of available results until 2003 is given in

the book of David and Nagaraja (2003).

Let X1, X2, . . . be a sequence of iid random variables, independent of and iden-

tically distributed to Y1. An observation Xj is called an upper (lower) record value

if its value exceeds (resp. falls below) those of all the previous observations, that is

the nth upper (resp. lower) record value, Un (resp. Ln), is defined as XTn
, where

T1 = 1, with probability 1, and Tn = min{j : j > Tn−1, Xj > XTn−1
} (resp.

Tn = min{j : j > Tn−1, Xj < XTn−1
}), for n > 1. Throughout this paper we
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deal with upper record values for a predictive inference. Similar results can be obtained

for the case of lower record values. The inter-record time statistic, defined as

∆s = Ts+1 − Ts, s ≥ 1,

is the number of observations between sth and (s + 1)th record values. For more details

we refer the reader to Arnold et al. (1998). Record data arise in a wide variety of practical

situations including industrial stress testing, finance, meteorological analysis, hydrology,

seismology, sporting and athletic events, and mining surveys.

The problem of predicting future observations has been extensively studied in the liter-

ature and several parametric and non-parametric procedures are developed for prediction.

In many practical data-analytic situations, one is interested in constructing a prediction

interval on the basis of available observations. There are situations in which the available

observations and the predictable future observation are of the same type. The prediction

of future records on the basis of observed records from the same distribution and predic-

tion of order statistics based on order statistics are studied, among others, by Dunsmore

(1983), Nagaraja (1984), Chou (1988), Awad and Raqab (2000), Raqab and Balakrishnan

(2008) and the references therein.

Recently, Ahmadi and Balakrishnan (2010), Ahmadi and MirMostafaee (2009), Ah-

madi et al. (2010) and MirMostafaee and Ahmadi (2011), discussed the prediction of

future records from a Y -sequence based on the order statistics observed from an indepen-

dent X-sequence, and vice versa.

In predicting future order statistics on the basis of observed record statistics, some-

times the available observations also include inter-record times which can be utilized as

additional information to improve the predictive inference. In other words, when both

record values and the inter-record times are available, it would be nice to employ the

information included in both records and record times. Feuerverger and Hall (1998) em-

phasized that ”However, the record times and record values jointly contain considerably

more information about F than the record values alone.” Actually, applying the addi-

tional information about record times is not a new subject and several authors focused on

inference based on both record values and record times, see for example Samaniego and

Whitaker (1986), Lin et al. (2003), Doostparast (2009), Doostparast and Balakrishnan

(2013), Kızılaslan and Nadar (2014) and MirMostafaee et al. (2016).

In this paper, a two parameter exponential distribution, Exp(µ, σ), with pdf

f(x;µ, σ) =
1

σ
e−(x−µ)/σ, x > µ, µ ∈ R, σ > 0, (1.1)

is considered as the underlying distribution. We write Z ∼ Exp(µ, σ) if the pdf of Z can

be expressed as (1.1). Note that µ and σ are the location and scale parameters, respec-

tively. Throughout this paper we assume that both parameters, µ and σ, are unknown.

Now, suppose that Y1, · · · , Ym constitute a future random sample from a two param-

eter exponential distribution, i.e. Y1, · · · , Ym
iid
∼ Exp(µ, σ) and Y1:m < · · · < Yj:m are

the corresponding order statistics of this sample. In addition, Ȳm = m−1
∑m

i=1 Yi:m de-

notes the mean of this future sample. If Y1, · · · , Ym denote the times to failure of m
independent units in a lifetime test, then Ȳm can be interpreted as the mean time on test

of these failed units. We assume that the available data include the observed upper record
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values, U1, · · · , Un, given the inter-record times, (∆1, . . . ,∆n−1). We emphasize that

these record values are assumed to be extracted from a sequence of iid random variables

{Xj, j = 1, 2, · · · } where Xj ∼ Exp(µ, σ) for j = 1, 2, · · · . Moreover, the sequence

{Xj, j = 1, 2, · · · } and the sample {Yi, i = 1, · · · ,m} are statistically independent. Note

that n is the number of the observed record values and depends on the experiment, how-

ever, m is the sample size of the future observations and it can be considered arbitrary. In

addition, n and m are unrelated. The problem of interest is to obtain conditional predic-

tion intervals for jth future order statistic, Yj:m, as well as for the mean, Ȳm, in a future

sample on the basis of the available data. We compare our conditional prediction intervals

with the unconditional ones proposed by Ahmadi and MirMostafaee (2009) and observe

an improvement over the predictive inference without inter-record times. Therefore, we

consider two cases: (a) The informative data contain only the upper record values, (b)

The informative data contain the upper record values and the inter-record times, and then

we observe that case (b) has some predictive inferential improvement in comparison with

case (a).

The rest of the paper is organized as follows. Some general preliminaries are pre-

sented in Section 2. Conditional prediction intervals for the future jth order statistic,

Yj:m, and the mean of the future sample, Ȳm, based on record values of given inter-record

times for the two parameter exponential distribution are studied in Sections 3 and 4. An

illustrative example and some concluding remarks are involved in Sections 5 and 6. The

R codes for computing some results of the paper are given in the appendix.

2 Preliminaries

In this section, we present some general preliminary results used in future sections. Given

upper record values u1, . . . , un−1, which are observed and extracted from the sequence

{Xj; j ≥ 1}, inter-record times ∆1, . . . ,∆n−1 are independent geometrically distributed

random variables with success probabilities F̄ (ui), i = 1, . . . , n − 1. Furthermore, the

record values U1, . . . , Un form a Markov Chain with adjacent transition pdf equal to the

left truncated pdf of the underlying distribution, see Arnold et al. (1998). Thus, the joint

distribution of Un = (U1, . . . , Un) and ∆n = (∆1, . . . ,∆n−1) is

fUn,∆n
(un, δn) =

n−1
∏

i=1

f(ui)[F (ui)]
δi−1f(un), (2.1)

where un = (u1, . . . , un) ∈ X
n, in which X is the support of X and δn = (δ1, . . . , δn−1) ∈

N
n−1, see Samaniego and Whitaker (1986) and Arnold et al. (1998) page 169. We em-

phasize that ∆n contains n − 1 positive integer-valued discrete random variables and δn

is the observed vector of ∆n. By integrating (2.1) with respect to (w.r.t.) u1, . . . , un, we

can easily prove the following result.

Lemma 1 The joint probability mass function of ∆1, . . . ,∆n−1 is

P∆n
(δn) = Pr(∆n = δn) =

n−1
∑

j=1

cj(n, δn)[(a1(n, j, δn) + 1)(a1(n, j, δn) + an(n, j, δn) + 2)]−1,



4 Amini and MirMostafaee

where

cj(n, δn) = (−1)n−j−1

[

j−2
∏

j1=0

(

n−j1−1
∑

t=n−j+1

δt

)

n−j−2
∏

j2=0

(

n−j
∑

t=j2+2

δt

)]−1

,

a1(n, j, δn) =

n−j
∑

t=1

δt − 1, an(n, j, δn) =
n−1
∑

t=n−j+1

δt,

in which we assume for a > b,
∑b

t=a δt = 0 and
∏b

t=a δt = 1.

In this paper, we need the conditional distribution of U1 and Un given by ∆n = δn as

follows.

Lemma 2 The conditional pdf of U1 and Un given ∆n = δn is

fU1,Un| ∆n
(u1, un| δn) = [P∆n

(δn)]
−1

n−1
∑

j=1

cj(n, δn)[F (u1)]
a1(n,j,δn)[F (un)]

an(n,j,δn)f(u1)f(un),

where cj(n, δn), a1(n, j, δn), an(n, j, δn) and P∆n
(δn) are as in Lemma 1.

The proof of Lemma 2 is straightforward by integrating (2.1) w.r.t. u2, . . . , un−1 and

dividing the obtained equation by P∆n
(δn).

3 Conditional prediction intervals for order statistics

In this section, the goal is to find a conditional prediction interval for Yj:m when the

observed U1, . . . , Un are available given ∆n = δn for the two parameter exponential

distribution.

To this end, we consider the pivotal quantity

Wj =
Yj:m − U1

Un − U1

. (3.1)

Note that the pivotal quantity Wj is the same as the one considered by Ahmadi and Mir-

Mostafaee (2009). This quantity is location and scale invariant namely it is free of both

unknown parameters i.e. the location parameter µ and the scale parameter σ. It is also

a simple function of both observed and future statistics, so that the future statistic can be

derived from it easily. Ahmadi and MirMostafaee (2009) found the unconditional distri-

bution of Wj while we present the conditional distribution of Wj given ∆n = δn, (i.e. the

inter-record times are assumed to be known and fixed) in the following theorem.

Theorem 1 The conditional cdf of Wj in (3.1) given ∆n = δn is for w > 0

FWj | ∆n
(w|δn) =

m
∑

l=j

n−1
∑

j1=1

l
∑

j2=0

a1(n,j1, δn)
∑

j3=0

an(n,j1, δn)
∑

j4=0

(

m
l

)(

a1(n,j1, δn)
j3

)(

an(n,j1, δn)
j4

)(

l
j2

)

(−1)j2+j3+j4P∆n
(δn)

×cj1(n, δn)[(j2 +m− l + j3 + j4 + 2)((j2 +m− l)w + j4 + 1)]−1,
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and for w < 0

FWj | ∆n
(w|δn) =

m
∑

l=j

n−1
∑

j1=1

l
∑

j2=0

a1(n,j1, δn)
∑

j3=0

an(n,j1, δn)
∑

j4=0

(

m
l

)(

a1(n,j1, δn)
j3

)(

an(n,j1, δn)
j4

)(

l
j2

)

(−1)j2+j3+j4P∆n
(δn)

×cj1(n, δn)[(j2 +m− l + j3 + j4 + 2)(j4 + 1− w(j3 + j4 + 2))]−1,

where a1(n, j1, δn) and an(n, j1, δn) are defined in Lemma 1 and P∆n
(δn) is the joint

mass function of ∆1, . . . ,∆n−1 which is also given in Lemma 1.

Proof: Letting J∗
n,1 = (Un−U1)/σ, U∗

1 = (U1−µ)/σ and Y ∗
j:m = (Yj:m−µ)/σ, we may

write

FWj | ∆n
(w|δn) =

∫ ∞

0

∫ ∞

0

FY ∗

j:m
(vw + u)fU∗

1
,J∗

n,1| ∆n
(u, v|δn) du dv. (3.2)

For t > 0, we have

FY ∗

j:m
(t) =

m
∑

l=j

(

m

l

)

(1− e−t)le−(m−l)t. (3.3)

Also, from Lemma 2, we obtain

fU∗

1
,J∗

n,1| ∆n
(u, v| δn) = [P∆n

(δn)]
−1

n−1
∑

j=1

cj(n, δn)[1−e−u]a1(n,j,δn)[1−e−(u+v)]an(n,j,δn)e−(2u+v).

(3.4)

Hence, by substituting (3.4) and (3.3) in (3.2) and using the binomial expansions, we

have for w > 0,

FWj | ∆n
(w|δn) =

m
∑

l=j

n−1
∑

j1=1

l
∑

j2=0

a1(n,j1, δn)
∑

j3=0

an(n,j1, δn)
∑

j4=0

(

m
l

)(

a1(n,j1, δn)
j3

)(

an(n,j1, δn)
j4

)(

l
j2

)

cj1(n, δn)

(−1)j2+j3+j4P∆n
(δn)

×

∫ ∞

0

∫ ∞

0
e−(j2+m−l+j3+j4+2)ue−((j2+m−l)w+j4+1)v du dv,

and therefore we naturally arrive at the desired expression. Similarly, we may attain the

expression for FWj | ∆n
(w|δn) when w < 0 after substituting (3.4) and (3.3) in (3.2) by

noting that the integral w.r.t. u must be taken from −vw to ∞. 2

Let wγ(n,m, j; δn) be the γth conditional quantile of Wj given ∆n = δn, i.e.

Pr(Wj < wγ(n,m, j; δn)| ∆n = δn) = γ.

To find 100(1 − α)% two-sided conditional prediction intervals for Yj:m based on record

values given ∆n = δn, we have to find the conditional quantiles wα1
(n,m, j; δn) and

w1−α2
(n,m, j; δn), for α1 + α2 = α, 0 < αi < 1, i = 1, 2, numerically.

Now, a 100(1 − α)% conditional prediction interval for Yj:m based on record values

given ∆n = δn, is given by

(U1 + wα1
(n,m, j; δn)(Un − U1), U1 + w1−α2

(n,m, j; δn)(Un − U1)). (3.5)
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Table 1: The values of w0.025(3,m, j), w0.975(3,m, j), w0.975(3,m, j)− w0.025(3,m, j),
w0.025(3,m, j; δn), w0.975(3,m, j; δn), w0.975(3,m, j; δn)− w0.025(3,m, j; δn), for

m = 10, 20, j = 5, 7, 10 (for m = 10), j = 12, 17, 20 (for m = 20) and different values of

δn.

m 10 20

j 5 7 10 12 17 20

Unconditional w0.025 -3.671 -2.814 -0.907 -3.140 -1.760 -0.380

w0.975 1.278 2.635 9.761 1.827 4.767 12.186

w0.975 − w0.025 4.949 5.449 10.668 4.967 6.527 12.566

δn = (1, 2) w0.025 -1.097 -0.500 0.249 -0.651 0.055 0.464

P∆n
(δn) = 0.0833 w0.975 1.766 3.502 11.868 2.459 6.108 14.586

w0.975 − w0.025 2.863 4.002 11.619 3.110 6.053 14.122

δn = (1, 3) w0.025 -1.288 -0.652 0.201 -0.827 -0.025 0.420

P∆n
(δn) = 0.05 w0.975 1.290 2.627 9.481 1.786 4.675 11.690

w0.975 − w0.025 2.578 3.279 9.280 2.613 4.700 11.270

δn = (1, 4) w0.025 -1.427 -0.774 0.160 -0.965 -0.098 0.386

P∆n
(δn) = 0.0333 w0.975 1.022 2.106 7.984 1.398 3.793 9.872

w0.975 − w0.025 2.449 2.880 7.824 2.363 3.891 9.486

δn = (2, 3) w0.025 -2.181 -1.267 0.045 -1.538 -0.320 0.324

P∆n
(δn) = 0.0167 w0.975 1.027 2.413 10.212 1.502 4.669 12.787

w0.975 − w0.025 3.208 3.680 10.167 3.040 4.989 12.463

δn = (2, 4) w0.025 -2.330 -1.409 -0.008 -1.697 -0.415 0.289

P∆n
(δn) = 0.0119 w0.975 0.823 1.976 8.880 1.193 3.896 11.163

w0.975 − w0.025 3.153 3.385 8.888 2.890 4.311 10.874

Conditionally on δn, we get more information about the unknown parameters µ and

σ, or generally more information about F , which leads to better prediction intervals for

Yj:m. It is noted that conditioning on inter-record times does not decrease the length of

the prediction interval necessarily and increase or decrease in the location and scale of

the interval depend on the values of δn. For the purpose of illustration, consider the

conditional quantiles of Wj , which are computed and tabulated in Table 1, for α = 0.05,

n = 3, m = 10, 20, j = 5, 7, 10 (m = 10), j = 12, 17, 20 (m = 20) and some values

of δn. The values of unconditional quantiles of Wj in Table 1 are taken from Ahmadi

and MirMostafaee (2009), Tables 3 and 4. By comparing the entries of Table 1, one

can observe that for a few cases, the conditional prediction intervals have bigger lengths,

especially when we predict the biggest future order statistic, i.e. Ym:m. But note that in the

most cases the conditional intervals are shorter than the unconditional ones for different

values of δn, so we may conclude that generally the conditional prediction approach leads

to shorter (and hence better) prediction intervals in average for different values of δn and

this can be considered as an improvement.
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4 Conditional Prediction Intervals for the mean of future

sample

The problem of constructing a conditional prediction interval for Ȳm on the basis of ob-

served U1, . . . , Un, given ∆n = δn, using the pivotal quantity

Vm =
Ȳm − U1

Un − U1

, (4.1)

is considered for the two parameter exponential distribution in this section. Note that the

pivotal quantity Vm has been also considered by Ahmadi and MirMostafaee (2009) and its

unconditional distribution has been obtained by them. Moreover, Vm is also location and

scale invariant and therefore is free of the unknown location and scale parameters. The

following theorem presents the conditional distribution function of Vm given ∆n = δn.

Theorem 2 The conditional distribution function of Vm in (4.1) given ∆n = δn is

FVm| ∆n
(x|δn) = 1−

m−1
∑

l=0

n−1
∑

j1=1

l
∑

j2=0

a1(n,j1, δn)
∑

j3=0

an(n,j1, δn)
∑

j4=0

(

a1(n,j1, δn)
j3

)(

an(n,j1, δn)
j4

)(

l
j2

)

(−1)j3+j4P∆n
(δn)l!

×
cj1(n, δn)x

j2mlΓ(l − j2 + 1)Γ(j2 + 1)

(m+ j3 + j4 + 2)l−j2+1(mx+ j4 + 1)j2+1
,

for x > 0, and

FVm| ∆n
(x|δn) =

n−1
∑

j1=1

a1(n,j1, δn)
∑

j3=0

an(n,j1, δn)
∑

j4=0

(−1)j3+j4
(

a1(n,j1, δn)
j3

)(

an(n,j1, δn)
j4

)

cj1(n, δn)

P∆n
(δn)(2 + j3 + j4)[j4 + 1− (2 + j3 + j4)x]

−

m−1
∑

l=0

n−1
∑

j1=1

l
∑

j2=0

a1(n,j1, δn)
∑

j3=0

an(n,j1, δn)
∑

j4=0

l−j2
∑

j5=0

(

a1(n,j1, δn)
j3

)(

an(n,j1, δn)
j4

)(

l
j2

)

(−1)j3+j4+j5P∆n
(δn)l!

×
cj1(n, δn)x

j2+j5mlΓ(l − j2 + 1)Γ(j2 + j5 + 1)

j5!(m+ j3 + j4 + 2)l−j2−j5+1[j4 + 1− (j3 + j4 + 2)x]j2+j5+1
,

for x < 0, where a1(n, j1, δn) and an(n, j1, δn) are given in Lemma 1

Proof: Let J∗
n,1 = (Un − U1)/σ, U∗

1 = (U1 − µ)/σ and Ȳ ∗
m = (Ȳm − µ)/σ. Note that

FVm| ∆n
(x|δn) =

∫ ∞

0

∫ ∞

0

FȲ ∗

m
(vx+ u)fU∗

1
,J∗

n,1| ∆n
(u, v|δn) du dv, (4.2)

where fU∗

1
,J∗

n,1| ∆n
(u, v| δn) is given in (3.4). Since mȲ ∗

m ∼ Γ(m, 1), that is for t > 0

FȲ ∗

m
(t) = 1−

m−1
∑

l=0

(mt)le−mt

l!
, (4.3)
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so by substituting (3.4) and (4.3) in (4.2) and using the binomial expansions, we get for

x < 0

FVm| ∆n
(x|δn) =

n−1
∑

j1=1

a1(n,j1, δn)
∑

j3=0

an(n,j1, δn)
∑

j4=0

(

a1(n,j1, δn)
j3

)(

an(n,j1, δn)
j4

)

cj1(n, δn)

(−1)j3+j4P∆n
(δn)

×

∫ ∞

0

∫ ∞

−vx
e−(j3+j4+2)ue−(j4+1)v du dv

−
m−1
∑

l=0

n−1
∑

j1=1

l
∑

j2=0

a1(n,j1, δn)
∑

j3=0

an(n,j1, δn)
∑

j4=0

(

a1(n,j1, δn)
j3

)(

an(n,j1, δn)
j4

)(

l
j2

)

(−1)j3+j4P∆n
(δn)l!

× cj1(n, δn)x
j2ml

∫ ∞

0

∫ ∞

−vx
e−(m+j3+j4+2)ue−(mx+j4+1)vul−j2vj2 du dv

=
n−1
∑

j1=1

a1(n,j1, δn)
∑

j3=0

an(n,j1, δn)
∑

j4=0

(−1)j3+j4
(

a1(n,j1, δn)
j3

)(

an(n,j1, δn)
j4

)

cj1(n, δn)

P∆n
(δn)(2 + j3 + j4)[j4 + 1− (2 + j3 + j4)x]

−
m−1
∑

l=0

n−1
∑

j1=1

l
∑

j2=0

a1(n,j1, δn)
∑

j3=0

an(n,j1, δn)
∑

j4=0

l−j2
∑

j5=0

(

a1(n,j1, δn)
j3

)(

an(n,j1, δn)
j4

)(

l
j2

)

(−1)j3+j4+j5P∆n
(δn)l!

×
cj1(n, δn)x

j2+j5mlΓ(l − j2 + 1)

j5!(m+ j3 + j4 + 2)l−j2−j5+1

∫ ∞

0
e−(j4+1−(j3+j4+2)x)vvj2+j5 dv

and therefore we naturally attain the desired result. Similarly, we may deduce the desired

expression for FVm| ∆n
(x|δn) when x > 0. 2

To find conditional prediction interval for Ȳm based on records given ∆n = δn,

we have to find the conditional quantiles of Vm given ∆n = δn, vα1
(n,m; δn) and

v1−α2
(n,m; δn), for α1 + α2 = α, 0 < αi < 1, i = 1, 2, numerically, where

Pr(Vm < vγ(n,m; δn)| ∆n = δn) = γ.

A 100(1 − α)% conditional prediction interval for Ȳm based on record values given

∆n = δn then is

(U1 + vα1
(n,m; δn)(Un − U1), U1 + v1−α2

(n,m; δn)(Un − U1)). (4.4)

An illustrative example has been presented in Section 5.

5 An illustrative example

In this section, we illustrate the proposed procedures by considering a real data set. A

rock crushing machine has to be reset if, at any operation, the size of rock being crushed
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Table 2: 95% CPIs and UPIs for Y12:20, Y20:20 and Ȳ20 for Example 1.

CPI UPI

Y12:20 (0, 24.17836) (0, 54.061745)

Y20:20 (13.290315, 183.67385) (0, 307.85602)

Ȳ20 (0, 26.233175) (0, 61.32183)

is larger than any that has been crushed before. The following data given by Dunsmore

(1983) are the sizes dealt with up to the third time that the machine has been reset:

9.3, 0.6, 24.4, 18.1, 6.6, 9.0, 14.3, 6.6, 13.0, 2.4, 5.6, 33.8.

The record values were the sizes at the operation when resetting was necessary. Dunsmore

(1983) assumed that these data follow an Exp(0, σ) distribution. Clearly, we have

U1 = 9.3, U2 = 24.4, U3 = 33.8,

T1 = 1, T2 = 3, T3 = 12,

∆1 = 2, and ∆2 = 9.

Consider a future sample of size m = 20. We want to find equi-tailed 95% conditional

prediction intervals (CPIs) for Y12:20, Y20:20 and Ȳ20 using (3.5) and (4.4) and compare

these intervals with unconditional ones (UPIs). The results are given in Table 2. Note that

some lower bounds have got negative values, which were replaced by zero. We can see

that the conditional prediction intervals are shorter than the corresponding unconditional

ones.

6 Concluding remarks

In this paper, we found prediction intervals for the future order statistics based on record

values, given record time statistics, when the underlying distribution is two parameter

exponential. These intervals have the advantage of utilizing more information embed-

ded in the observed sequence in comparison with their corresponding unconditional ones

obtained by Ahmadi and MirMostafaee (2009). These ideas can be extended to the non-

parametric and the Bayesian context. The conditional point predictors are also of interest.

Work on these problems is currently under process and we hope to report these findings

in future papers.
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Appendix

Here, we present the R codes for computing the conditional cumulative distribution func-

tions of Wj , (see Theorem 1) and Vm (see Theorem 2). R functions for computing the

unconditional cumulative distribution functions of Wj and Vm (see Ahmadi and Mir-

Mostafaee, 2009) are also given.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% cjn function %%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

cjn=function(n,j,delta){

z=(-1)ˆ(n-j-1)

z1=n-j+1

z2=j-2

z4=n-j-2

z5=n-j

s=1

if(z2>=0 & z1>=0){

for(j1 in 0:z2){

z3=n-j1-1

ss=ifelse(z3>=z1,sum(delta[z1:z3]),0)

s=s*ss

}}

t=1

if(z4>=0){

for(j2 in 0:z4){

z6=j2+2

tt=ifelse(z5>=z6,sum(delta[z6:z5]),0)

t=t*tt

}}

return(z/t/s)
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}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%% Mass probability of Delta %%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

pdelta=function(n,delta){

n1=n-1

pdel=0

for(jj in 1:n1){

nj=n-jj

nj1=n-jj+1

A=cjn(n,jj,delta)

a1=ifelse(nj>=1,sum(delta[1:nj]),0)-1

an=ifelse(n1>=nj1,sum(delta[nj1:n1]),0)

C=(a1+1)*(a1+an+2)

pdel=pdel+A/C

}

return(pdel)

}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%% conditional cdf of W %%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Fw=function(n,j,m,w,delta){

n1=n-1

pw=0

for(l in j:m){

for(j1 in 1:n1){

for(j2 in 0:l){

nj1=n-j1+1

nj=n-j1

a1=ifelse(nj>=1,sum(delta[1:nj]),0)-1

an=ifelse(n1>=nj1,sum(delta[nj1:n1]),0)

for(j3 in 0:a1){

for(j4 in 0:an){

A=choose(m,l)*choose(a1,j3)*choose(an,j4)*choose(l,j2)

*((-1)ˆ(j2+j3+j4))*cjn(n,j1,delta)/pdelta(n,delta)

B=j2+m-l+j3+j4+2

if(w<0) C=B*(j4+1-w*(j3+j4+2))

if(w>=0) C=B*(w*(j2+m-l)+j4+1)

pw=pw+A/C

}}}}}
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return(pw)

}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%% conditional cdf of V %%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Fv=function(n,m,v,delta){

pv=0

n1=n-1

m1=m-1

if(v>=0){

for(l in 0:m1){

for(j1 in 1:n1){

for(j2 in 0:l){

nj1=n-j1+1

nj=n-j1

a1=ifelse(nj>=1,sum(delta[1:nj]),0)-1

an=ifelse(n1>=nj1,sum(delta[nj1:n1]),0)

for(j3 in 0:a1){

for(j4 in 0:an){

A=choose(a1,j3)*choose(an,j4)*choose(l,j2)/factorial(l)

/pdelta(n,delta)*((-1)ˆ(j3+j4))

B=cjn(n,j1,delta)*(vˆj2)*(mˆl)*gamma(l-j2+1)*gamma(j2+1)

/((m+j3+j4+2)ˆ(l-j2+1))/((m*v+j4+1)ˆ(j2+1))

pv=pv+A*B

}}}}}}

if(v>=0) pv=1-pv

pv1=0

pv2=0

if(v<0){

for(j1 in 1:n1){

nj1=n-j1+1

nj=n-j1

a1=ifelse(nj>=1,sum(delta[1:nj]),0)-1

an=ifelse(n1>=nj1,sum(delta[nj1:n1]),0)

for(j3 in 0:a1){

for(j4 in 0:an){

A=((-1)ˆ(j3+j4))*choose(a1,j3)*choose(an,j4)*cjn(n,j1,delta)

/pdelta(n,delta)/(2+j3+j4)/(j4+1-v*(2+j3+j4))

pv1=pv1+A

}}}

for(l in 0:m1){

for(j1 in 1:n1){

for(j2 in 0:l){
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nj1=n-j1+1

nj=n-j1

a1=ifelse(nj>=1,sum(delta[1:nj]),0)-1

an=ifelse(n1>=nj1,sum(delta[nj1:n1]),0)

for(j3 in 0:a1){

for(j4 in 0:an){

lj2=l-j2

for(j5 in 0:lj2){

A=choose(a1,j3)*choose(an,j4)*choose(l,j2)/factorial(l)

/pdelta(n,delta)*((-1)ˆ(j3+j4+j5))

B=cjn(n,j1,delta)*(vˆ(j2+j5))*(mˆl)*gamma(l-j2+1)

*gamma(j2+j5+1)/factorial(j5)/((m+j3+j4+2)ˆ(l-j2-j5+1))

/((j4+1-v*(j3+j4+2))ˆ(j2+j5+1))

pv2=pv2+A*B

}}}}}}

pv=pv1-pv2

}

return(pv)

}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%% unconditional cdf of W %%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

FwU=function(n,j,m,w){

pw=0

if(w<0) pw=(m-j+1)*((1-w)ˆ(1-n))/(m+1)

if(w>=0){

ss=0

j1=j-1

for(i in 0:j1){

ss=ss+choose(j1,i)*((-1)ˆi)*((1+w*(m-j+i+1))ˆ(1-n))

/(m-j+i+1)/(m-j+i+2)

}

pw=1-j*choose(m,j)*ss

}

return(pw)

}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%% unconditional cdf of V %%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

FvU=function(n,m,v){

pv=0

if(v<0) pv=((1-v)ˆ(1-n))/((1+1/m)ˆm)

if(v>=0){
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m1=m-1

s1=0

s2=0

for(i in 0:m1){

nn=n+i-2

s1=s1+choose(nn,i)*((1-1/(m*v+1))ˆi)*((1/(m*v+1))ˆ(n-1))

*((m/(m+1))ˆ(m-i))

s2=s2+choose(nn,i)*((1-1/(m*v+1))ˆi)*((1/(m*v+1))ˆ(n-1))

}

pv=s1+1-s2

}

return(pv)

}


