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Abstract

There are numerous reliability coefficients and α is the most popular. It is known that
different coefficients can be appropriate in specific conditions and that α should not be used
indiscriminately. However, some coefficients and conditions, particularly regarding the
latent structure, lacked attention in previous research. In four Monte Carlo simulations, this
study compared α, λ2, maximized λ4, λ4-based on locally optimal splits, μ2, Gilmer-Feldt,
Kaiser-Caffrey α, Heise-Bohrnstedt Ω, Joreskog’s ρ, ωtotal, algebraic greatest lower bound,
greatest lower bound based on minimum rank factor analysis in every condition and also
hierarchical ω and asymptotic ω hierarchical in multidimensional conditions. Findings
suggest each of these coefficients can be useful at least in some conditions. Most differences
in performance were observed in congeneric conditions and conditions with up to moderate
loadings. Some coefficients were found to be more useful than previously considered.
Results are discussed in the context of existing theory and previous Monte Carlo studies.
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1. Introduction
α (Cronbach, 1951; Guttman, 1945) is the most popular reliability coefficient. For brevity,
the term “coefficient” represents reliability of test scores in a design that uses a single time
point. The term can be considered as equivalent to “reliability coefficient” and “measure of
reliability.”. In theory, if undimensionality holds and errors are uncorrelated, α represents
a lower bound to reliability of a composite. If items are additionally τ-equivalent, α is
theoretically equal to reliability (Lord&Norvick, 1968). In practical situations, α is influenced
by various factors that make it biased and imprecise. Therefore, it should not be used
indiscriminately.

The indiscriminate use of α has been met with criticism, primarily due to its limited
usefulness. It mostly underestimates and occasionally overestimates reliability (e.g., Cho,
2021b; Green & Yang, 2009a; Sijtsma, 2009; Sijtsma & Pfadt, 2021). Some researchers
suggested α should be abandoned (e.g., McNeish, 2018). Raykov and Marcoulides (2019)
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argued that α has practical utility under certain empirical conditions and should be used
when justifiable, especially because it can yield similar values as some other coefficients (e.g.,
Savalei & Reise, 2019). Still, Bentler (2021) suggested α is simply a conservative estimate of
a lower bound to reliability. Cho (2022) demonstrated there is no universally appropriate
coefficient and that many alternative coefficients have been overlooked.

1.1. Latent structure and reliability

Before estimating reliability, it is recommended to examine the latent structure using
confirmatory factor analysis (CFA). The latent structure encompasses measurement model
type, dimensionality, and error correlatedness. It is possible to determine if the model
type is parallel, τ- equivalent, or congeneric. Parallelism holds if item means, standard
deviations, item true scores or factor loadings, errors, and correlations with any other
construct are equal. τ-equivalence holds if factor loadings are equal, but error variances
differ (Lord & Norvick, 1968). If both factor loadings and errors are heterogeneous, the
model is congeneric.

According to latent trait theory, a common assumption is that items are unidimensional.1

Unidimensionality holds if a single-factor model fits and items are locally independent (Mc-
Donald, 1981). Measurement model types have mostly been discussed for conditions in
which unidimensionality holds, but there are also multidimensional parallel and multidi-
mensional τ-equivalent models (Cho, 2016). Multidimensional models are increasingly often
used (e.g., Gessaroli & Champlain, 2005).

Local dependence refers to the presence of correlated errors or residuals when the
underlying latent variable is controlled. Correlated residuals stem from many different
sources, such as subgroups of items being associated with different stimulus materials, item
arrangement, or transient errors (Green & Yang, 2009a). Sets of locally dependent itemsmake
tests multidimensional. However, correlated residuals differ from multidimensionality of
purposely measured constructs since the former represents random and the latter represents
fixed multidimensionality (Wainer & Thissen, 1996). Correlated residuals may indicate
the model has been misspecified (e.g., Shi et al., 2018). If a model requires respecification,
residual correlation can be allowed when justifiable (Anderson & Gerbing, 1984).

Reliability coefficients vary in their appropriateness for particular conditions. Violated
τ-equivalence and unidimensionality mostly attenuate reliability estimates and correlated
residuals can make them biased in either direction (e.g., Raykov, 1998). Coefficients can
be broadly divided into those based on item variance-covariance matrix (e.g., Guttman,
1945; ten Berge & Zegers, 1978) and those based on factor analysis (FA; see Bentler, 2021).
In theory, coefficients based on item variance-covariance matrix are considered a lower
bound to reliability if unidimensionality and uncorrelated errors hold and equal to reliability
if also loadings are τ-equivalent (e.g., Guttman, 1945; Novick & Lewis, 1967) with some
exceptions (e.g., Gilmer & Feldt, 1983). FA-based coefficients are considered less restrictive
as reliability estimators since they incorporate item unique variance and are appropriate for
multidimensional structures (e.g., McDonald, 1999).

1Unidimensionality refers to a single-factor solution that fits. In the classical test theory (CTT), there is no
formal assumption of unidimensionality since each item can contain unique variance, or the assumption of
uncorrelated errors since models that assume correlated errors lead in different approaches to reliability (e.g.
Sijtsma & Pfadt, 2021).
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1.2. An overview of some reliability coefficients and previous research related to the latent
structure and reliability

α was introduced as λ3 in a series of six lower bounds to reliability (λ1−6; see Guttman,
1945). λ2 and λ4(max), or maximized split-half (where halves are denoted as 𝑎 and 𝑏), are
considered superior to α. The relationship between λ2 and α is α ≤ λ2. The relationship
between λ4 and α is α ≤ λ4(max) and α = E[λ4(max)]. Hunt and Bentler (2015) introduced
a λ4 variant based on cumulative proportions of locally optimal splits that are below a
particular point 𝑄 in the distribution of split-halves. Hunt and Bentler (2015) demonstrated
their variant is superior to α and λ4(max) under one-factor and two-factor solutions in the
case of both parallel and congeneric measurement models with 𝑄 points of 0.05, 0.50, and
0.95, especially the 𝑄 point of 0.05. In the formulas (1.1), 𝐽 represents the total number of
items, 𝑗 represents a single item, 𝑋 represents the total observed score, while Var is variance,
which is calculated as the average of squared differences between the mean and each value:

λ3 = 𝑎 =
𝐽

𝐽 − 𝐼
(1 −

∑Var𝑗
Var𝑋

)

λ2 = 1 −
∑Var𝑗
Var𝑋

+ √
𝐽

𝐽−1 ∑Cov2𝑗,𝑗−1

Var𝑋

λ4(max /𝑄) = 2 (1 −
Var𝑎 +Var𝑏

Var𝑋
) .

(1.1)

Correlated residuals can make α either overestimate or underestimate reliability (e.g.,
Raykov, 1998) and the effect occurs even if not all the residuals are correlated (Zimmerman
et al., 1993). Thompson et al. (2010) compared α and λ4(max) under different latent struc-
tures, across various sample sizes and test lengths, and concluded λ4(max) can overestimate
reliability.

ten Berge and Zegers (1978) presented the μ-series. μ0 is equivalent to α and μ1 is
equivalent to λ2. The coefficients belong to an infinite series of lower bounds to reliability
without notable improvement beyond μ2:

μ2 = ∑Cov𝑗,𝑗−1 +
√
∑Cov2𝑗,𝑗−1 +√

𝐽
𝐽−1 ∑Cov4𝑗,𝑗−1

Var𝑋

Gilmer and Feldt (1983) presented a coefficient (GF) for unidimensional congeneric
models as a superior alternative to α. GF is based on variances and inter-item covariances of
𝑗 items and 𝑖 parts, where 𝑙 represents the row of the inter-item variance-covariance matrix
with the largest sum:

GF =
⎛
⎜
⎜
⎝
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(
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) .

Osburn (2000) compared various coefficients and concluded λ4 is typically the least
biased estimate of reliability, followed by GF. λ4 was also shown to be relatively unbiased in
the two-dimensional model, unlike other coefficients. He demonstrated α underestimates
reliability under severe violation of τ-equivalence.
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Coefficients based on FA are often referred to as ω-family or composite reliability. α is a
special case of ω-family if and only if unidimensionality and τ-equivalence hold. ω-family
relies on the FAmethod and is calculated using 𝑗 item loadings (λ2) and FA residuals (θ). Some
ω-family coefficients are based on alpha FA and standardized loadings (KC; Kaiser & Caffrey,
1965) or unstandardized loadings (ρ; Jöreskog, 1971). ω based on group factor loadings
with CFA is denoted as ω total (ω𝑡; Revelle & Zinbarg, 2009). However, some coefficients in
the ω-family use either group factor loadings, such as ω𝑡 and principal components-based
Ω (HB; Heise & Bohrnstedt, 1970), or general factor loadings, such as hierarchical ω (ωℎ;
McDonald, 1999) and asymptotic hierarchical ω (ω𝑎; Revelle, 2022):

ω =
(∑λ𝑗)

2

(∑λ𝑗)
2 + (∑θ𝑗)

. (1.2)

α and ω often yield relatively similar values in practical situations if unidimensionality
holds, residuals are uncorrelated, and loadings are homogeneous (Savalei & Reise, 2019).
The discrepancy between α and reliability is higher when most loadings are low (e.g., Green
& Yang, 2009b) or the departure from τ-equivalence is severe, even for a single item (Raykov,
1998).

Jackson andAgunwamba (1977) presented the greatest lower bound (GLB). It corresponds
to the smallest average true score variance under the restriction that no individual true score
variance is larger than its corresponding observed score variance while keeping the item
variance-covariance matrix positive semi-definite over iterations. In theory, it outperforms
other existing coefficients and is considered an improvement to the λ-series. It can be
calculated using the algebraic approach (GLBA; Moltner & Revelle, 2020) or minimum rank
factor analysis (GLBM; Shapiro & ten Berge, 2002). GLB does not require unidimensionality
and τ-equivalence but requires uncorrelated residuals (𝑒3):

GLB = 1 −
∑ 𝑒
Var𝑋

.

Although GLB is considered useful with large sample sizes and is occasionally superior to
coefficients that require unidimensionality (Sijtsma, 2009), it tends to overestimate reliability
(e.g., Hunt & Bentler, 2015) and some authors doubt it is superior to ω (e.g., Revelle &
Zinbarg, 2009).

Trizano-Hermosilla and Alvarado (2016) compared α, ω𝑡, and two GLB algorithms under
unidimensional τ-equivalent and congeneric models with uncorrelated residuals. They also
varied sample size, test length, and increasing proportion of asymmetrical items. They
concluded ω is superior to α in general. Also, GLB is superior to ω with a high proportion
of asymmetrical items. Finally, GLB overestimates reliability in some conditions, especially
with a small sample.

Edwards et al. (2021) took over conditions from Green and Yang (2009a). They compared
α, ω𝑡, ωRevelle, ωℎ, and GLB under the unidimensional model with uncorrelated residuals and
varied sample size, test length, population reliability, and factor loadings. α and ω yielded
the least biased estimates of reliability while GLB consistently overestimated reliability.

2The symbol λ represents factor loadings in this formula and should be discerned from the λ-series.
3While θ represents residuals within the FA framework, 𝑒 is a generic symbol for residuals that encompasses

the residuals for both GLB variants.
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Trizano-Hermosilla et al. (2021) compared α, ω𝑡, ωℎ, ω𝑎, and two GLB algorithms under
bi-factor structures. They varied general factor loadings, specific factor loadings, sample
size, and test length. Asymptotic ω𝑎 followed by ωℎ were shown to be the most accurate for
the general factor reliability estimation and outperformed the remaining four coefficients.
For total reliability estimation, ω𝑡 followed by GLB algorithms and α were shown to be the
least biased.

Xiao and Hau (2023) compared α, ordinal α, ω𝑡, Revelle’s ω𝑡, ωℎ, and GLB in unidi-
mensional conditions with uncorrelated residuals. They varied scale (continuous, ordinal),
distribution, and factor loadings. Findings indicated that bias was acceptable for continu-
ous scales with varying degrees of non-normality if the loadings were high, but the bias
increased with increasing non-normality and moderate factor loadings. For the ordinal
scale, most coefficients except ωℎ were acceptable with non-normal data having at least
four points.

Cho (2022) reanalyzed several existing Monte Carlo simulation studies to determine why
their conclusions differ. He suggested the examination of a small number of coefficients is
the main reason for different conclusions in the existing simulation studies.

1.3. Current research

This study extends previous research related to the latent structure in terms of the investi-
gated coefficients and conditions. Moreover, it serves as a follow-up on a recently published
paper (see Novak & Rebernjak, 2023), which has a degree of overlap with this study in terms
of coefficients. It yielded numerous insights about the differences in coefficient performance
and the interactions among the factors related to empirical conditions. However, the primary
focus of that paper was limited to factors related to empirical conditions, while this research
is focused on the effect of the factors related to the latent structure on reliability estimates
and expands the existing knowledge in that regard.

Considering previous research on the effect of latent structure on reliability, it appears
that ω-family has been investigated up to a certain point, but the emphasis was predomi-
nantly on ω𝑡 and ωℎ. Therefore, KC, ρ, and HB will be included in unidimensional conditions,
and ω𝑎 will be included in multidimensional conditions. The study will also examine λ2,
λ3/α, λ4(max), λ4(𝑄=0.05), μ2, GF, and GLB variants in every condition. Although an analyti-
cal approach may not be suitable in this context, the findings are expected to contribute to
the existing analytical theory. The results will be compared to previous research and it is
expected some previous findings will be replicated, while many insights will be new. Most
applicable insights will be distilled into specific recommendations at the end of the paper,
providing guidance for practical reliability estimation.

The research is separated into two studies, each consisting of two scenarios. The
conditions in the first study represent random multidimensionality in the form of residual
correlation and the conditions in the second study represent fixed multidimensionality in the
form of correlated factor-structures (Wainer & Thissen, 1996). The first scenario of the first
study focuses on unidimensional solutions with τ-equivalent and congeneric models and
either uncorrelated or correlated residuals when every residual pair is correlated. Conditions
in the second scenario of the first study are specified to cover τ-equivalent models when
a proportion of residual pairs are correlated in either direction. The first scenario of the
second study primarily focuses on multidimensional conditions involving correlated factors
with varying levels of factor correlation and factor loadings. In the second scenario of the
second study, the focus is on latent structure with discrete scale and asymmetrical item
distribution included to explore their interaction. Therefore, the final scenario involves the
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number of factors, factor loadings, scale, and item distribution as factors. Every scenario
also has sample size and test length as factors because the former affects the precision of
every parameter estimation, while the latter is theoretically and practically relevant in the
context of reliability estimation. The design for every scenario is displayed in Listing A1.

2. Method
Data generation and analysis were conducted using R software (R Core Team, 2022). The
description of the data generation procedure is provided alongside each study. The seed was
selected using a random number table in each scenario. Mersenne-Twister random number
generator was used to generate the data. In the data generation process, packages randtests
(Caeiro & Mateus, 2022), Johnson (Santos Fernandez, 2014), and whitening (Strimmer et al.,
2022) were used. The whole procedure was parallelized and some functions were compiled
to increase the execution speed using base R packages parallel and compiler. α, μ2, GF,
KC, and HB were calculated using package unirel (Cho, 2021a). λ2, λ4(max), λ4(𝑄=0.05), and
ω𝑡 were calculated using package Lambda4 (Hunt, 2019). GLBM, GLBA, ωℎ, and ω𝑎 were
calculated using package psych (Revelle, 2022). One thousand repetitions were used in
every scenario, which was judged as sufficient since the designs are not complex.

In every scenario, performance was evaluated using median bias and bias distribution.
The width of the latter is referred to as precision. Median bias was used since some
coefficients are expectedly biased in a particular direction, which might result in a non-
normal bias distribution. Bias distribution of each coefficient is displayed using box plot. In
each figure that displays bias, the dashed vertical line represents the benchmark calculated
for each model. Visualization was done using packages ggplot2 (Wickham, 2016) and
cowplot (Wilke, 2022).

In line with Cho (2022), some coefficients occasionally yielded values outside the range
between zero and unity, mostly in conditions with a small sample. The proportion of such
out-of-range values was removed because they are theoretically impossible and would
introduce bias into the result presentation. Their frequencies and proportions for each
coefficient per scenario are displayed in Table A1.

2.1. Study 1

2.1.1. Conditions. In the first scenario, conditions are specified to extend Green and Yang
(2009a) and Edwards et al. (2021) by comparing additional coefficients and including addi-
tional factors. Measurement models for six and 12 items are taken over from Green and Yang
(2009a). These measurement models (see Table A2) were selected since they cover various τ-
equivalent and congeneric conditions with a range from low to high loadings, some of which
can be typically encountered in practice. This study additionally extends these conditions by
including correlated residuals. The following levels of residual correlation (θ) are specified:
0 like in Green and Yang (2009a) and Edwards et al. (2021), 0.05 as minor residual correlation
that can occur with well-fitting models, and 0.1 as the largest absolute value of residual
correlation for close-fitting models (Shi et al., 2018). Including larger residual correlation
values was deemed unnecessary because reliability is estimated for the solution that fits and
it would introduce additional complexity into the design without adding valuable insights.
Residual correlation is identical for every item pair. These residual correlation values also
do not result in singular matrices when combined with measurement models from Green
and Yang (2009a). Finally, sample size levels are selected to reflect various levels of factor
stability: 50, 200, 400 (MacCallum et al., 1999), and 1000. Sample size and residual correlation
levels are crossed with every measurement model for each test length condition. Therefore,
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scenario 1 design is partially crossed and consists of 336 conditions.
In the second scenario, bifactor models for six and 12 items in Green and Yang (2009a)

are modified and treated as conditions with pairs of correlated residuals. Therefore, only
general factor loadings were treated as contributing to construct-relevant variance, while
group factors were treated as correlated residuals. Instead of original general factor loadings
0.3 and 0.8, modified loadings are specified as 0.2, 0.5, and 0.8 for six and 12 items to
cover low, medium, and high loadings conditions and make the results more generalizable.
Furthermore, instead of residual correlation 0.04 and 0.36, residual correlation ±0.05 and
±0.15 are selected to examine the influence of both positively and negatively correlated
residuals. In every measurement model and test length condition, either one or two residual
pairs are correlated, which corresponds to certain empirical conditions in which it was
justifiable to allow residual correlation (e.g., Anderson & Gerbing, 1984). Sample size levels
are identical to the first scenario. Sample size and residual correlation levels are crossed
with every measurement model for each test length condition. The design in scenario 2 is
fully crossed and consists of 192 conditions.

2.1.2. Data generation. The data generation procedure was identical for both Study 1 scenar-
ios. Data were generated by sampling from a continuous normal distribution with 𝑀 = 0
and 𝑆𝐷 = 1. Random normal variables were generated with the following validity check
procedure. If the generated data did not meet the target criteria, they were generated anew
or transformed. The first part of the validity check involved outlier detection with the
conventional threshold of |𝑧| ≥ 3. Outlier replacement with a random value from normal
distribution was done until no outliers were present to control the effect of outlier presence
on reliability. Afterward, one-sample Wald-Wolfowitz test was used to test the randomness
of the generated data with the 0.05 𝑝-value threshold. If the data were non-random, the
procedure was repeated until randomness was achieved. Finally, if sample skewness > 1,
Johnson transformation was applied. Skewness threshold of 1 was selected to control for
capitalization on chance in conditions with a small sample. The described procedure was
applied to the generation of both true scores and residuals. True scores and residuals were
generated separately for each sample size (𝑁). True score inter-item correlation for each
measurement model was induced by multiplying randomly generated data with Cholesky
decomposition of factor loading products matrix. Residuals in the uncorrelated residuals
conditions were additionally decorrelated using zero-phase component analysis to remove
potential spurious correlation. Residual correlation (θ) was induced by multiplying ran-
domly generated data with Cholesky decomposition of a target correlation matrix. True
scores and residuals were summed and 𝐽 residuals were multiplied with 1 − λ𝑗 to make
the observed scores in line with the FA model. The validity of data obtained using this
procedure was checked using FA several times before the data generation procedure to
make sure the method produces factor structures in line with previously tested algorithms.
Afterward, coefficients were calculated and compared to the benchmark. The benchmark
for measurement model (λ4) and test length (𝐽) conditions was based on population models
as in Green and Yang (2009a). These benchmark values represent population reliability
that is typically estimated in practical research. The benchmark is specified according to
Equation (1.2), but based on population model loadings, while ω-family coefficients are
based on sample loadings. The benchmark represents the CTT view of true reliability that
assumes uncorrelated errors, while some conditions in the design represent situations in

4λ that represents loadings in various measurement models should be discerned from λ coefficients.
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which sample residuals are correlated. The documented code for the described procedure is
provided in the Supplement (online).

2.1.3. Study 1 results. Figure 1 and Figure 2 represent coefficient bias in conditions with
uncorrelated residuals for combinations of λ and 𝑁 levels. Figure 1 displays τ-equivalent
and congeneric factor loading conditions, while Figure 2 contrasts congeneric conditions
with an increasing violation of τ-equivalence and congeneric conditions with heterogeneous
loadings. Results with uncorrelated residuals are comparable to Green and Yang (2009a)
and Edwards et al. (2021).

Figure 1 clearly illustrates coefficients differ in performance even if τ-equivalence holds
unless loadings are high (λ = 0.8), in which case estimates are more precise and less
expectedly biased. Moreover, if τ-equivalence holds and loadings are high, coefficients
perform quite similarly. If τ-equivalence holds and loadings are not high, coefficients differ
in performance and mostly tend to underestimate reliability. If τ-equivalence holds, loadings
are low (λ = 0.2), and 𝑁 is small, coefficients generally tend to overestimate reliability. In
conditions with heterogeneous loadings, estimates do not converge with an increase in 𝑁
and 𝐽, in contrast to conditions in which τ-equivalence holds. Expectedly, an increase in 𝑁
results in improved precision, especially if combined with higher loadings and increased
𝐽. Finally, an increase in 𝐽 results in somewhat improved precision in general, even if 𝑁 is
small.

α performs similarly to many other coefficients when τ-equivalence holds, but underes-
timates reliability the most in conditions with heterogeneous loadings. GLB variants tend
to overestimate reliability in some conditions. λ2 and λ4(max) did not outperform other
coefficients in any condition. When loadings are moderate and 𝑁 is at least 200, HB and
GLBA generally outperform others. However, if 𝑁 is at least 400, GLBM becomes useful. In
the case of low loadings and 𝐽 being 6, ρ outperforms others up to an 𝑁 value of 200. On
the other hand, GF, ω𝑡, and HB outperform other coefficients if 𝑁 is at least 400. KC appears
to outperform other coefficients in heterogeneous loading conditions, followed by HB.

Figure 2 illustrates most coefficients tend to underestimate reliability expectedly up to
0.10, which is similar to findings in Figure 1. α, followed by λ2, underestimates reliability
the most in nearly every condition. Only if loadings are all relatively high (0.8) except for
one item, α even outperforms some coefficients in terms of median bias, but mostly not in
terms of precision if the sample is not large. On the other hand, GLBM tends to overestimate
reliability in general. Moreover, coefficients are generally imprecise if the 𝑁 is small, but
their precision increases with an increase in 𝑁 and loadings, except for GF and GLBM in
some conditions. If most loadings are low, μ2 and λ4(𝑄=0.05) are the least biased. ω𝑡, HB, KC,
and GLBA seem to be the closest estimates of reliability most often, but the latter is useful
only if loadings are relatively high and 𝑁 is not small. KC appears to be the most precise in
most conditions. λ4(max) appears to be generally superior to λ4(𝑄=0.05) in terms of median
bias but inferior in terms of precision.

Results for 12-item conditions are displayed in Figure A1 due to numerous similarities
with six-item conditions. They suggest coefficient precision improves with an increase in
𝑁 and when these results are compared to Figure 2, it appears an increase in 𝐽 facilitates
the precision. Compared to heterogeneous conditions in Figure 1, it seems coefficients can
approximately converge with an increase in 𝑁 and 𝐽 even if τ-equivalence is violated, but
most loadings have to be high. Estimates are densely distributed around the benchmark
only if both 𝑁 is large and loadings are homogeneous and high. In such situations, there is
little difference in coefficient performance.
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Figure 1. Three τ-equivalent conditions and congeneric condition with heterogeneous loadings.
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Figure 2. Six-item conditions with an increasing violation of τ-equivalence.
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There are some specific differences compared to six-item conditions. α also performs
the worst in general but performs more similarly to most other coefficients with an increase
in 𝑁. GF can expectedly both underestimate and overestimate reliability and only appears to
be useful if most loadings are low and 𝑁 is small. Unlike in conditions displayed in Figure 2,
λ2 is not the second worst-performing coefficient in most conditions, but it also never
outperforms other coefficients, and neither do μ2 and ρ. λ4(max) appears to be generally
superior to λ4(𝑄=0.05) in terms of median bias but inferior in terms of precision unless
loadings are up to moderate. KC outperforms other coefficients if there are approximately
half low and half moderate loadings, or approximately half low and half high loadings
and the sample is 200 to 400. HB performs similarly to KC in terms of median bias but is
less precise overall and more biased in more conditions. KC, HB, and ω𝑡 outperform other
coefficients if most loadings are high, KC somewhat more often than ω𝑡 and HB. HB appears
to be the least biased if 𝑁 is 200 and at least a third of loadings are high, which was not
the case in six-item conditions. However, λ4 variants outperform KC and ω𝑡 if loadings are
up to moderate and heterogeneous and 𝑁 is small. GLB variants are expectedly positively
biased in most conditions, but GLBA is the least biased if 𝑁 is 200 and two thirds of loadings
are high.

When Figures 1, 2 and A1 are compared, it appears coefficient precision improves more
easily with an increase in 𝐽 if τ-equivalence holds. Otherwise, the improvement in precision
is limited even if only one item violates τ-equivalence. However, an increase in 𝐽 somewhat
facilitates improvement in precision regardless of the measurement model, but more easily
if most loadings are high.

Figure 3 and Figure 4 represent coefficient bias in conditions where results are averaged
over measurement models. This approach aligns to the logic of the Latin hypercube sampling
and these results are expected in a range of low to high loadings for both τ-equivalent and
congeneric measurement models displayed in Green and Yang (2009a).

Figure 3 demonstrates α, λ2, λ4 variants, μ2, GF, and ω𝑡 tend to underestimate reliability
when averaged over measurement models, even if all the residuals are correlated up to 0.10.
It appears low average positive residual correlation can occur simultaneously with expected
underestimation. KC, HB, and GLBA perform similarly and outperform other coefficients
in most conditions, especially the former. However, GLBA requires 𝑁 at least 200, like in
conditions with uncorrelated residuals. ω𝑡 performs similarly to KC and HB if the residuals
are correlated. GLBM is expectedly positively biased in general. Finally, GF is expectedly
the most imprecise in every condition, followed by GLBM.

Figure 4 illustrates that, compared to six-item conditions in Figure 3, bias is systematically
reduced for most coefficients, even if residuals are correlated. GLB variants display a higher
tendency to overestimate reliability compared to six-item conditions in Figure 3. KC and
HB are among the least biased coefficients, like in Figure 4, but the latter requires 𝑁 at least
200. However, GLBA is useful in some conditions with correlated residuals if 𝑁 is at least
400. Also, GLBA requires a larger 𝑁 if 𝐽 is higher. α, λ2, λ4 variants, μ2, GF, and ω𝑡 display a
similar performance pattern as in six-item conditions.

Finally, Figure 3 and Figure 4 demonstrate large 𝑁 results in negatively skewed bias
distribution if residuals are correlated, and in such conditions, coefficients still expectedly
underestimate reliability regardless of 𝐽, except for GLBM. However, it is not certain whether
this would be so if the average residual correlation exceeds 0.10. Still, it appears even if the
model is borderline misspecified, as indicated by residual correlation, reliability coefficients
can underestimate reliability or be unbiased.

It appears at least some factors in the design interact so potential interactions are probed
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Figure 3. Six-item conditions with correlated residuals averaged over measurement models.

using ANOVAs with coefficient bias as the dependent variable and partial η2 as the effect
size. Every level of each factor was included, except for loadings (λ), in which case only
τ-equivalent conditions were retained as factor levels. Conventional thresholds for small
(0.01), medium (0.06), and large (0.14) partial η2 were used in the interpretation. Effect sizes
were considered trivial if below the threshold for medium effect size and only effect sizes
that are nontrivial for at least one coefficient are displayed. Main effects and interactions
are ordered from left to right based on the global effect size sum to make them ordered by
relative importance in influence on reliability estimates, which may not be visible in the
display. Effect sizes for each factor and interaction are displayed in Figure A2.

The main insights regarding each factor’s impact on bias in reliability coefficients are
the following. λ emerges as the most influential factor with a large effect size. θ also exhibits
a non-trivial effect, but is somewhat less influential compared to λ. The interaction λ × θ
proves to be relevant among the interaction effects. In contrast, the main effects of 𝑁 are
either trivial or large. It appears that higher-order interaction effects have limited relevance
in this specific combination of factors. Therefore, it appears that λ and 𝑁 are of primary
importance for the coefficient selection. However, the specifics of each coefficient should
also be considered. For instance, GLB variants, HB, and KC are affected by λ the most, while
ρ is affected the least, followed by α.

In scenario 2, it was demonstrated how residual correlation influences reliability esti-
mation if not all the residuals are correlated and if residuals are positively or negatively
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Figure 4. 12-item conditions with correlated residuals averaged over measurement models.

correlated. It was observed that residual correlation 0.05 trivially affects reliability estima-
tion, so the display is limited to residual correlation 0.15. Also, since 𝑁 levels merely show
different degrees of coefficient stability in this case, the display is limited to sizes 50 and
1000. Results are displayed in Figure 5.

Figure 5 illustrates coefficient precision is improved if λ is 0.8, even if 𝑁 is small. In
such cases, it makes little difference which coefficient is used. This is similar to findings for
conditions with uncorrelated residuals in Figures 1, 2 and A1, which suggests bias induced by
the correlation of residual pairs can be nearly completely mitigated with an increase in λ and
𝑁. Expectedly, bias can be increased in either direction if two residual pairs are correlated
compared to one pair, which is similar for every coefficient and depends on the direction
of residual correlation. This increase in bias is larger if 𝐽 is 6. However, most coefficients
still expectedly underestimate reliability. Furthermore, pairs of correlated residuals result
in peculiar coefficient performance in some conditions. More specifically, if λ is 0.2 and
𝑁 is small, it appears up to two pairs of positively correlated residuals make coefficients
underestimate reliability and vice versa. If loadings are small, λ4(max) is the least biased if
also 𝑁 is small, while GLBA is the least biased in 12-item conditions if also 𝑁 is large. If
loadings are moderate, λ4(max) is the least biased if also 𝑁 is small, while GLBM is the least
biased if also 𝑁 is large. It appears these coefficients are useful in conditions when only a
proportion of residuals are correlated.



14 Novak and Rebernjak

Figure 5. Conditions with residual pair correlation 0.15.

2.1.4. Study 1 findings in the context of previous research. Study 1 findings are contextualized
in Listing 1, which summarizes insights provided in Figures 1–5. The insights are compared
to previous findings, starting from Green and Yang (2009a) and Edwards et al. (2021), who
used some identical conditions, followed by Zimmerman et al. (1993), who investigated
correlated residuals, and other studies that are comparable in terms of explored coefficients.

The comparison is limited to findings for unidimensional conditions. Replications of
previous findings and new insights are discerned. To avoid repetition, new insights were
placed adjacent to the study they expanded upon the most.

Listing 1. Replicated and new insights from Study 1.

Green and Yang (2009a), Edwards et al. (2021)

Replicated insights
• α expectedly underestimates population reliability if τ-equivalence does not hold.
• α and ω performed similarly and that α even outperformed ω when population reliability,
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sample size, and test length were low.
• ω slightly outperformed α in congeneric conditions.
• GLB mostly overestimates reliability.

New insights
• α, followed by λ2, underestimates reliability the most in nearly every congeneric condition.
• α outperforms some coefficients in terms of bias only if loadings are all relatively high (0.8)

except for one item.
• ω𝑡 was outperformed by λ4 variants, μ2, KC, HB, ρ, and GLB variants in numerous con-

generic conditions, especially with up to moderately high loadings or heterogeneous
loadings with a range of low to high loadings.

• In congeneric conditions with highly heterogeneous loadings, coefficient performance
does not converge with an increase in sample size and test length as in conditions in which
τ-equivalence holds or loadings are congeneric but all relatively high.

• If most loadings are homogeneous and high and sample size is large, coefficients perform
quite similarly.

Zimmerman et al. (1993)

Replicated insights
• α expectedly underestimates population reliability if τ-equivalence does not hold.
• α overestimates reliability when residuals are positively correlated.
• α can be imprecise with small sample sizes.

New insights
• λ2, λ4 variants, μ2, GF, KC, HB, ρ, and GLB variants are similarly affected by correlated

residuals as ρ if all the residuals are mutually weakly positively correlated, regardless of
the sample size.

• α, λ2, λ4 variants, μ2, GF, and ω𝑡 tend to underestimate reliability even if there is residual
correlation that is low and either positive or negative.

• ω𝑡 and GLBA expectedly outperformed other coefficients, especially α, if measurement
model is among the ones used in Green and Yang (2009a) and all the residuals are weakly
inter-correlated.

• KC, HB, and occasionally GLBA outperform other coefficients if some residual pairs are
weakly correlated.

• When unidimensionality holds, factor loadings affect reliability coefficients the most, and
higher-order interactions are trivial.

Osburn (2000)

Replicated insights
• λ4(max), followed by GF, outperformed other coefficients, including α and λ2, in unidimen-

sional conditions.
• α underestimates reliability under severe violation of τ-equivalence.
• Most coefficients, including λ2, are mildly superior to α if the model is congeneric.

New insights
• λ4(max) is not as superior to other coefficients.
• GF is among the least precise coefficients, but it can be useful with small sample sizes and

relatively low loadings.
• Most coefficients are superior to α if the model is congeneric with up to moderate, or

especially with highly heterogeneous loadings.

Thompson et al. (2010)

Replicated insights
• α performs similarly to other coefficients when τ-equivalence holds.
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• α was outperformed by other coefficients when τ-equivalence was violated.
• α generally underestimates reliability and it can be severely biased with small sample sizes.

New insights
• λ4(max) is not expectedly positively biased, even if residuals are weakly positively correlated.

Hunt and Bentler (2015)

Replicated insights
• λ4(max) appears to be generally superior to λ4(𝑄=0.05) in terms of median bias but inferior in

terms of precision unless loadings are up to moderate.
• GLBA can overestimate population reliability more than λ4(max) and λ4(𝑄=0.05).
• λ4(𝑄=0.05) often outperforms α.

New insights
• GLBA and especially GLBM are outperformed by ω𝑡 more often than not since GLB variants

tend to overestimate reliability.
• GLBA can outperform ω𝑡 under various measurement models if the test is short and sample

is large.
• GLBA does not always require large sample and approximately 200 can be sufficient,
ANOVA showed loading magnitude is more relevant than sample size for GLBA bias.

Trizano-Hermosilla and Alvarado (2016)

Replicated insights
• α and ω converge in τ-equivalent conditions.
• ω is superior to α in general, even with small sample sizes.
• GLB overestimates reliability under some conditions, especially if the sample is small.
• Coefficients are less biased in conditions with 12 items compared to conditions with 6

items.
New insights

• α, λ2, λ4 variants, μ2, GF, KC, HB, ρ, and GLB variants converge when τ-equivalence holds
and loadings are high, but if loadings are τ-equivalent and equal to 0.5 or 0.2, coefficients
differ and most of them tend to underestimate reliability.

• KC is a superior default choice to ω𝑡.
• An increase in test length can result in improved precision with small sample sizes for all

the coefficients.

Listing 1 shows that insights related to coefficients generally support the observation
by Cho (2022) that no coefficient is appropriate for every condition. The fact that some
insights are replicated further supports the conclusions from previous studies. However,
the findings presented above have some limitations. More precisely, they do not apply to
multidimensional structures, models with at least moderate residual correlation, ordinal
scales, and data with extremely skewed items and outliers.

2.2. Study 2

2.2.1. Conditions. In Study 1, every condition represented unidimensional construct-relevant
variance, while some conditions also included a certain degree of random multidimensional-
ity in the form of correlated residuals. In the first scenario of Study 2, coefficient performance
in conditions with fixed multidimensionality is examined more thoroughly. ωℎ and ω𝑎 are in-
cluded since they converge to ω𝑡 in Study 1 but differ from ω𝑡 in multidimensional conditions.
Conditions are therefore specified to cover correlated-factor models. Two-dimensional and
three-dimensional structures are investigated since previous studies did not go further than
two dimensions. Dimension correlation is specified to be 0.4, 0.55, and 0.7. Such levels were
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selected to represent conditions in which it is justifiable to estimate total reliability and
cover moderate to strong correlation. Group factor loadings are specified as 0.2 and 0.5 to
reflect low and medium loadings since higher loadings cannot be crossed with higher values
of dimension correlation without obtaining a singular matrix. Sample size and test length
levels are identical to those in Study 1 and crossed with every other level of remaining
factors. The design is fully crossed and consists of 96 conditions.

In the second scenario, higher-order interactions of latent structure and some empirical
factors are probed. Previous findings suggest that departures from non-normality and
continuous scale result in reliability underestimation, but it was not investigated how these
factors interact with the latent structure. Xiao and Hau (2023) crossed various non-normal
distributions, factor loading levels, and sample sizes with both continuous and ordinal scales.
However, these conditions were limited to six unidimensional items in which every item is
identically distributed. Therefore, in the second scenario, sample size, test length, number
of dimensions, factor loading, scale, and item distribution are varied simultaneously. Test
length levels are taken over from the previous scenarios, but sample size levels are limited
to 200 and 1000 since it is sufficient to explore interactions. As the number of dimensions
and their correlation were examined more thoroughly in the first scenario, they are limited
to one or two dimensions with correlation 0.55 selected as moderate correlation magnitude.
Similarly, group factor loadings were limited to 0.3 and 0.6 to cover both relatively low
loadings and moderate to high loadings. The scale was limited to continuous and ordinal
five-point scales because the latter is commonly used in practice. Item distribution included
levels in which every item is normally distributed, half of the items are normally distributed
and half of the items are extremely asymmetrically distributed, and every item is extremely
asymmetrically distributed. Extreme asymmetry was selected since it was shown that up
to moderate asymmetry does not significantly affect reliability estimation, especially if
the scale is continuous (Xiao & Hau, 2023). The design is fully crossed and consists of 96
conditions.

2.2.2. Data generation. Random normal variables with validity checks were generated like
in Study 1. Function sim.minor() from psych package was used to obtain population inter-
item correlation matrices for each number of dimensions, dimension correlation, and factor
loading condition. Random variables were multiplied with the Cholesky decomposition
of a particular population inter-item correlation matrix to obtain target latent structures.
The data generation procedure was identical in every phase of both Study 2 scenarios,
with the exception that distribution for target items was transformed into non-normal
using Fleishman’s (1978) power method and continuous scale was categorized into ordinal
five-point scale in half conditions of the second scenario. Coefficients for the Fleishman
polynomial are 𝑎 = −1, 𝑏 = 0.45, and 𝑐 = 0.12. In the case of five-point ordinal scale and
asymmetrical items, continuous scale was transformed into the target shape before catego-
rization. Extreme asymmetry had skewness = 1.24 and kurtosis = 0.93 for continuous scale
conditions, and skewness = 1.56 and kurtosis = 1.82 after discretization. Categorization
was done using the equipercentile method. Benchmark was similarly defined as in Study 1
but is based on both general and group factor loadings and it is comparable to total reliability
in Trizano-Hermosilla et al. (2021). Therefore, only the total reliability was specified as the
benchmark value.

2.2.3. Study 2 results. Figure 6 illustrates coefficient performance pattern is generally similar
over the conditions, while ωℎ and ω𝑎 differ compared to other coefficients. Precision
improves as the λ level, 𝑟, and 𝑁 increase. ωℎ is expectedly the least biased if 𝑟 is up to 0.55
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Figure 6. Two-dimensional conditions.
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and loadings are low, but is the most imprecise in every condition. However, it outperformed
ω𝑎 in terms of bias. If 𝑟 is 0.7 and λ is moderate, other coefficients outperform ωℎ and ω𝑎 and
perform mutually similarly, while HB, GLB variants, and occasionally ω𝑡 tend to slightly
overestimate reliability. λ4(𝑄=0.05) is mostly trivially superior to other non-hierarchical
coefficients, as well as GF if 𝐽 is 12. The coefficient performance pattern is quite similar
in three-dimensional conditions and the results are displayed in Figure A3. The main
difference is that, compared to two-dimensional conditions, ω𝑎 outperforms ωℎ if loadings
are moderate.

In both two-dimensional and three-dimensional conditions, an increase in 𝑟 and loadings
results in improved precision, especially if combined with large 𝑁, regardless of dimension-
ality. It also appears an increase in test length reduces precision when unidimensionality
does not hold, regardless of 𝑟 and the number of dimensions, except if loadings are moderate
and 𝑟 is 0.7.

Potential interactions are probed using ANOVAs with coefficient bias as a dependent
variable using partial η2 as the effect size estimate. Every level of each factor was included.
Effect sizes were treated like in the previous ANOVA. The results are displayed in Figure A4.

There are a few practically relevant insights from this ANOVA. λ is the most influential,
followed by 𝑟. The interaction λ×𝑟 is non-trivial, while higher-order interactions have limited
relevance in this combination of factors. 𝐽 and 𝑁 have mostly trivial effects, but they are
relevant in specific interactions. Overall, λ and 𝑟 are of primary importance for coefficient
selection. Regarding specific coefficients, λ has a significant impact on all coefficients,
affecting KC the most and λ4(max) the least. The effect of 𝑟 is non-trivial for all coefficients
except ωℎ. Among the interactions, λ × 𝑟 influences GF, ωℎ, and ω𝑎 the least, while the other
coefficients are affected similarly. Other interaction effects have limited practical utility,
with only a subset of coefficients showing non-trivial effects.

Overall, the influence of particular factors on the bias of reliability coefficients appears
to be more intricate if unidimensionality does not hold. However, these findings still
assume normal distribution and continuous scale in every condition, which is not the
case in scenario 2. Due to expected differences in coefficient performance resulting from
the influence of dimensionality, results are displayed separately for unidimensional and
two-dimensional conditions. The results of scenario 2 for unidimensional conditions are
displayed in Figure 7.

Figure 7 shows coefficients perform similarly if all the items are normally distributed,
even if the scale is ordinal with underlying normal distribution (D), except for GLBM, which
tends to overestimate reliability. Coefficients are generally affected by asymmetrical D. If the
scale is ordinal and the underlying D is asymmetrical, coefficients additionally underestimate
reliability compared to conditions with continuous scale. However, like in Study 1, in which
every condition assumes continuous D, estimates converge with an increase in 𝑁 and factor
loadings with ordinal scales as well, if the underlying D is normal. If all the items are
asymmetrical, coefficients expectedly systematically underestimate reliability.

GLBM seems to be the least biased if all the items are asymmetrical and if also 𝑁 is large
(𝑁 = 1000), while GLBA is the least biased if also 𝑁 is not large (𝑁 = 200). However, HB
performs equally well as GLB variants if all items are asymmetrical, loadings are low, and 𝑁
is not large. However, if half the items are asymmetrical and half are normally distributed,
there are more notable differences in coefficient performance. In such cases, for six-item
conditions, KC is the least biased overall and equalizes with HB if λ is not low, while GLBM
performs nearly like KC if λ is low and the scale is continuous. Conversely, α appears to be
affected by result asymmetry the most overall.
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Figure 7. Unidimensional conditions with distribution asymmetry and ordinal scale.

Finally, results from Figure 8 with continuous scale and normal distribution are com-
parable to conditions in Figure 1 because τ-equivalence holds in both. Their comparison
reveals that coefficients begin to perform similarly if loadings are at least 0.6. However,
this is limited to unidimensional τ-equivalent conditions with large samples and normally
distributed results. The results of scenario 2 for two-dimensional conditions are displayed
in Figure 8.

Figure 8 highlights the distinctions between conditions where half of the items are
asymmetrical and conditions where all the items are asymmetrical. These distinctions are
more pronounced in two-dimensional conditions than in the unidimensional conditions
depicted in Figure 7. Moreover, coefficients perform relatively similarly if all the items are
symmetrical and if all the items are asymmetrical. When all the items in the dataset follow a
symmetrical distribution and have low loadings, coefficients tend to overestimate reliability.
Conversely, when loadings are not low, coefficients predominantly tend to underestimate
reliability.

If loadings are low and items are all symmetrical or all asymmetrical, coefficients perform
similarly, even more similarly in 12-item conditions. In such conditions with all symmetrical
items, λ4(𝑄=0.05) is the least biased, and with all asymmetrical items, λ4(𝑄=0.05) is again the
least biased if the scale is continuous, while most other coefficients are relatively unbiased
if the scale is ordinal. If loadings are low and half the items are asymmetrical, KC is the
least biased, closely followed by HB and GLBA in 12-item conditions. If loadings are not
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Figure 8. Two-dimensional conditions with distribution asymmetry and ordinal scale.
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low and items are all symmetrical or all asymmetrical, HB and GLB variants are the least
biased. If loadings are not low and half the items are asymmetrical, KC is the least biased in
six-item conditions, and λ4(max), KC, HB, and GLB variants are the least biased in 12-item
conditions.

Based on ANOVA from the previous scenario, it was demonstrated interactions are
intricate when unidimensionality does not hold (see Figure A4). ANOVA in this scenario
suggests interactions are even more intricate if distribution and scale are also considered. In
Figure A5, interactions among 𝑁, 𝐽, result D, scale (S), λ, and number of dimensions/factors
𝑓 are displayed. Every level of each factor was retained and it should be noted that D has
three levels, as displayed in Figure 6 and Figure A3. Effect sizes were treated like in previous
ANOVAs.

ANOVA in this scenario revealed that D affects bias of reliability coefficients the most
among themain effects, followed by 𝑓, λ, S, and 𝐽. This effect is limited to extreme asymmetry.
In terms of interactions, 𝑓 ×D, λ × 𝑓, 𝐽 × 𝑓 ×D, and 𝐽 ×D affect bias more than S and 𝐽, while
the former is the most relevant interaction effect. The main effect of D is generally large,
and affects α the most, like in unidimensional conditions. The main effect of 𝑓 is mostly
large but trivial for GF and GLBA. The main effect of λ is large for nearly every coefficient
and medium for λ4(max) and GF, but generally smaller than the main effect of D. The main
effect of S is trivial for α, GF, and GLBA. There are no non-trivial interactions involving
S. However, there are several interactions involving D, λ, 𝑓, and 𝐽, especially the former.
Higher-order interactions are trivial in the context of latent structure and some empirical
factors that influence bias of reliability coefficients.

2.2.4. Study 2 findings in the context of previous research. The findings of Study 2 are con-
textualized in Listing 2, which summarizes insights provided in Figures 8 and A1–A4. The
insights are compared to findings from previous studies.

Unlike Listing 1, these insights focus on findings in conditions with multidimensional
structures, extreme skewness, and ordinal scales. Therefore, some studies from Listing 1
appear in Listing 2 as well. The process of comparing insights begins with studies that
investigated coefficients in multidimensional structures and then proceeds to studies that
addressed issues related to skewness and ordinal scales.

Listing 2. Replicated and new insights from Study 2.

Trizano-Hermosilla et al. (2021)

Replicated insights
• ω𝑡, GLBA, and GLBM are less biased reliability estimates in unidimensional structures

compared to ωℎ and ω𝑎.
New insights

• ωℎ is expectedly the least biased in two-dimensional conditions if factor correlation is up
to moderate and loadings are low.

• ω𝑎 outperforms ωℎ in three-dimensional conditions with moderate loadings.
• α, λ2, λ4 variants, μ2, GF, and KC are occasionally more useful than ωℎ and ω𝑎 if the factor

correlation is high and loadings are moderate.
• Precision of all the coefficients improves with an increase in loadings, factor correlation,

and sample size, but decreases with an increase in test length.
• ANOVA confirmed ωℎ and ω𝑎 are less affected by the factor correlation than other coeffi-

cients, but they are similarly affected by loadings.
• ANOVA suggests loadings and factor correlation are the most relevant in selecting the
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appropriate coefficient for particular conditions.

Osburn (2000)

Replicated insights
• λ4(max) is the least biased in two- and three-dimensional conditions with parallel, τ-

equivalent, and congeneric model, and low to high correlation between factors.
New insights

• Among the non-hierarchical coefficients, λ4(𝑄=0.05) is mostly trivially superior to λ4(max),
and GF is trivially superior to λ4(max) if test length is 12.

• ωℎ and ω𝑎 are superior to non-hierarchical coefficients when factors are highly correlated.

Hunt and Bentler (2015)

Replicated insights
• α substantially underestimates reliability.
• λ4(𝑄=0.05) is useful for two-dimensional conditions when τ-equivalence both does or does

not hold and for all sample sizes.
• λ4(𝑄=0.05) is superior to α in two-dimensional conditions.
• λ4(max) and GLBA overestimate reliability.

New insights
• λ4(max) and GLBA overestimate reliability, unless factor correlation is high and loadings

are moderate, regardless of sample size and test length.
• λ4(𝑄=0.05) is the least biased in two-dimensional conditions with moderately correlated

factors if all loadings are low, regardless of the scale and sample size.
• λ4(𝑄=0.05) is the least biased if all the items are asymmetrical and sample size is 200 and

outperformed λ4(max) in two-dimensional conditions with moderately correlated factors,
regardless of the scale and sample size.

Thompson et al. (2010)

Replicated insights
• λ4(max) outperforms α in two-dimensional conditions.

New insights
• λ4(max) is not the least biased and the most precise in two-dimensional conditions, but

similarly biased and precise as other non-hierarchical coefficients.
• KC is the most precise coefficient generally.

Trizano-Hermosilla and Alvarado (2016)

Replicated insights
• ω𝑡 slightly outperforms α in terms of bias and GLB variants are positively biased if items

are normally distributed regardless of measurement model and sample size.
• α and ω𝑡 underestimate reliability if items are asymmetrical regardless of measurement

model and sample size.
• GLB variants are relatively robust against extreme asymmetry if all items are asymmetrical

and outperform α and ω𝑡 in such conditions.
New insights

• α is the least robust against extreme asymmetry.
• HB is the most useful and outperforms GLB variants if all the items are asymmetrical and

loadings are not high.
• KC, and occasionally HB, outperform GLB variants if half the items are extremely asym-

metrical.
• α, λ2, λ4 variants, μ2, GF, and ρ underestimate reliability less if all the items are extremely

asymmetrical than if half the items are extremely asymmetrical.
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• Performance pattern of all the coefficients is more similar in conditions in which all the
items are normally distributed to conditions in which all the items are asymmetrical than
to conditions in which half the items are asymmetrical.

Xiao and Hau (2023)

Replicated insights
• Coefficients are biased in unidimensional conditions if factor loadings are moderate.
• High loadings and more scale points generally mitigate the biasing effect of extremely

asymmetrical items.
• Coefficients are differently affected by factors that influence reliability estimation.
• GLB is robust against asymmetry, but α and ω-family coefficients are not.

New insights
• If item asymmetry is extreme, distribution influences bias of reliability coefficients more

compared to number of dimensions and factor loadings, number of dimensions is generally
more influential compared to factor loadings, while the main effects of sample size, test
length, and scale are in such cases trivial for all the coefficients.

• The interaction of distribution with number of dimensions appears to be more relevant for
reliability estimation bias than the interaction of distribution with scale if unidimensionality
does not hold.

Listing 2 shows that, similarly to Listing 1, some insights are replicated, and that further
supports the conclusions from previous studies, while some insights are new and potentially
useful for practical reliability estimation. The shared limitation with Study 1 is that these
insights do not apply to data with outliers.

3. General discussion

Some joint insights from Study 1 and Study 2 expand the existing analytical theory. For
instance, Raykov (1997) showed analytically that α is negligibly biased beyond test length
four or six if loadings are at least 0.6. As indicated by Figures 1 and A3, if unidimensionality
and τ-equivalence hold, loadings are at least 0.6, the scale is either continuous or five-point
ordinal, sample is large, and the results are normally distributed, α performs similarly
to other coefficients. In such cases, it makes little difference which coefficient is used.
Additional support for the existing analytical theory is that not only α, but most other
coefficients are relatively unbiased and precise in such conditions. Differences in coefficient
performance are mostly observed if the model is τ-equivalent with lower loadings or the
model is congeneric, as shown in Study 1. Moreover, in Study 1, it was demonstrated that
even when all loadings are high (λ = 0.8) and one item violates τ-equivalence, α does not
exhibit the highest level of bias among the coefficients. These findings expand existing
analytical theory (Raykov, 1997, 1998), which suggests that the bias of α can be substantial
even if one item violates τ-equivalence.

Moreover, Study 1 and Study 2 generally support the criticism of the indiscriminate
use of α (e.g., Cho, 2021b; Green & Yang, 2009a; Sijtsma, 2009; Sijtsma & Pfadt, 2021).
These studies, however, also highlight that α can be useful in specific conditions (Raykov &
Marcoulides, 2019). McNeish (2018) concluded α is outperformed by every other coefficient.
Study 1 and Study 2 demonstrated it is mostly so, but not universally, as observed by Cho
(2022). In limited conditions in which α is not outperformed by every other coefficient, it is
never the least biased. As Bentler (2021) stated, α is simply a conservative lower bound to
reliability in some cases. α is theoretically relevant, but there are more useful alternatives
for practical reliability estimation.
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Previously, it was suggested α can be supplanted with ω𝑡 (e.g., Revelle & Zinbarg, 2009),
which would result in at least a slight improvement in most situations according to Study 1,
Study 2, and some previous research. Moreover, findings in Study 1 and Study 2 supported
the suggestion that λ2, μ2, and GF are generally more appropriate than α (Cho, 2021b) in
terms of bias. However, these coefficients are also occasionally outperformed by λ4 variants,
KC, HB, ρ, ω𝑡, GLB variants, or even ωℎ and ω𝑎 in some congeneric and multidimensional
conditions. HB, KC, and GLBA were found to be more useful than previously considered.

However, it should be noted that the appropriateness of these coefficients was evaluated
primarily in terms of bias. There are conditions in which coefficient precision can be
generally questionable, such as those with low loadings and small sample sizes. This issue
is more prominent with some coefficients, such as GLB variants, especially GLBM, as well
as GF. Thus, while the findings of this study can inform coefficient selection, it is advisable
to consider using multiple coefficients for reliability estimation due to their imprecision.
Moreover, the findings are applicable for test length up to 12 items and general tendency
toward reliability overestimation by GLB variants (e.g., Revelle & Zinbarg, 2009) should
be taken into account. Key takeaways for practical reliability estimation are provided in
Table 1.

These findings also revealed gaps for future research. There are no coefficients that
are precise in conditions with small sample sizes and up to moderate loadings, which was
evaluated using bias distribution. It might be useful to use additional performance measures
in future studies, such as (root) mean square error, to get additional insights about coefficient
accuracy. Moreover, while this study has compared this set of coefficients in numerous
conditions, further extensions are still possible. For instance, the effect of outliers and
missing data were not included in the designs. Also, while the test lengths used in the
designs are reasonable for unidimensional constructs, multidimensional conditions can
be investigated using a larger number of items. Regarding the latent structure, future
research might focus more on congeneric models where loadings are not high, as well as
multidimensional structures and structures with highly correlated residual pairs.

Table 1. Recommended coefficients for specific conditions.

Conditions in which it makes little difference which coefficient is used

Unidimensional, τ-equivalent loadings that are at least 0.6,
uncorrelated residuals, large sample, all items normally
distributed

/

Conditions in which coefficients can differ in performance non-trivially

Unidimensional, τ-equivalent loadings, uncorrelated residuals, and normal item distribution

Low loadings, small sample, short test ρ

Low loadings, small sample, test not short μ2
Moderate loadings, small sample, short test μ2
Moderate loadings, small sample, test not short λ4(max)

Moderate loadings, moderate sample size HB

Moderate loadings, large sample GLBM

Condition Coefficient

Continued on next page
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Table 1. Recommended coefficients for specific conditions. (Continued)

Unidimensional, congeneric loadings, uncorrelated residuals, and normal item distribution

Mostly low loadings, small sample size μ2, λ4(𝑄=0.05)
Mostly low loadings, at least moderate sample size ρ

Moderate loadings, at least moderate sample size HB, GLBA

Heterogeneous loadings of any magnitude, small sample size λ4(max), λ4(𝑄=0.05)
Approximately half low-half moderate loadings, small sample
size

λ4(max), λ4(𝑄=0.05)

Heterogeneous loadings of any magnitude, at least moderate
sample size

KC

Approximately half low-half moderate loadings, at least
moderate sample size

KC

Unidimensional, weakly correlated residuals, and normal item distribution

Every residual pair correlated KC, HB, GLBA

Proportions of correlated residuals GLBM, GLBA, λ4(𝑄=0.05)
Unidimensional, positively correlated residuals, and extremely asymmetrical item distribution

Low loadings, all the items are extremely asymmetrical KC, HB

High loadings, all the items are extremely asymmetrical GLBM, GLBA

Half the items are extremely asymmetrical KC

Two-dimensional, extremely asymmetrical items

Half the items are extremely asymmetrical KC

High loadings, all the items extremely asymmetrical GLBM, GLBA, HB

Up to moderate loadings, all the items are extremely
asymmetrical

λ4(𝑄=0.05)

Multidimensional conditions

Two dimensions, low loadings ωℎ, ω𝑎

Three dimensions, low loadings ω𝑎

At least moderate loadings Any non-hierarchical
coefficient, λ4(𝑄=0.05) slightly
preferable over others

Condition Coefficient
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Appendix A Supplementary material

Listing A1. Design for a specific scenario.

Study 1, Scenario 1

Factors and their levels
• Population loadings for 6-item and 12-item test (Green & Yang, 2009b)
• Sample size (50, 200, 400, 1000)
• Residual correlation (0, 0.05, 0.10).

Design type
• Partially crossed
• 14 × 4 × 3 + 14 × 4 × 3 = 336

Study 1, Scenario 2

Factors and their levels
• Population loadings (λ = 0.2, λ = 0.5, λ = 0.8)
• Test length (6, 12)
• Sample size (50, 200, 400, 1000)
• Correlated residual pairs (one pair, two pairs)
• Residual correlation (0.05, 0.15)
• Residual correlation direction (positive, negative)

Design type
• Fully crossed
• 3 × 2 × 4 × 2 × 2 × 2 = 192

Study 2, Scenario 1

Factors and their levels
• Population group factor loadings (λ = 0.2, λ = 0.5)
• Number of factors (2, 3)
• Factor correlation (0.40, 0.55, 0.70)
• Sample size (50, 200, 400, 1000)
• Test length (6, 12)

Design type
• Fully crossed
• 2 × 2 × 3 × 4 × 2 = 96

Study 2, Scenario 2

Factors and their levels
• Population group factor loadings (λ = 0.3, λ = 0.6)
• Number of factors (1, 2)
• Sample size (200, 1000)
• Test length (6, 12)
• Scale (continuous, five-point ordinal)
• Item distribution (symmetrical, extremely asymmetrical)
• Proportion of extremely asymmetrical items (none, half, all)

Design type
• Fully crossed
• 2 × 2 × 2 × 2 × 2 × 2 × 3 = 192
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Table A1. Missing values for particular coefficients across the scenarios.5

Study 1 Study 2

Coefficient Scenario 1 Scenario 2 Scenario 1 Scenario 2

α 1621 (0.0048) 3219 (0.0168) 2849 (0.0297) 3244 (0.0169)

λ2 440 (0.0013) 1017 (0.0053) 940 (0.0010) 297 (0.0015)

λ4(max) 1042 (0.0031) 1833 (0.0095) 1757 (0.0183) 528 (0.0028)

λ4(𝑄=0.05) 313 (0.0009) 666 (0.0034) 616 (0.0064) 282 (0.0015)

μ2 363 (0.0011) 848 (0.0044) 794 (0.0083) 234 (0.0012)

GF 8748 (0.0260) 11 442 (0.0596) 8071 (0.0841) 9271 (0.0483)

KC 0 0 0 0

HB 0 0 0 0

ρ 0 0 0 0

ω𝑡 286 (0.0009) 768 (0.0040) 63 (0.0007) 248 (0.0013)

GLBA 141 (0.0004) 95 (0.0005) 0 64 (0.0003)

GLBM 0 0 286 (0.0030) 0

ω𝑎 — — 1 (0.0000) —

ωℎ — — 55 (0.0006) —

Table A2. Population models from Green and Yang (2009a).

6-item conditions 12-item conditions

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.5 0.2 0.2 0.2 0.2 0.2 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.5 0.5 0.2 0.2 0.2 0.2 0.5 0.5 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.5 0.5 0.5 0.2 0.2 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2

0.5 0.5 0.5 0.5 0.2 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.2 0.2 0.2 0.2

0.5 0.5 0.5 0.5 0.5 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.2 0.2

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.8 0.2 0.2 0.2 0.2 0.2 0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.8 0.8 0.2 0.2 0.2 0.2 0.8 0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.8 0.8 0.8 0.2 0.2 0.2 0.8 0.8 0.8 0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2

0.8 0.8 0.8 0.8 0.2 0.2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.2 0.2 0.2 0.2

0.8 0.8 0.8 0.8 0.8 0.2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.2 0.2

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

0.8 0.8 0.5 0.5 0.2 0.2 0.8 0.8 0.8 0.8 0.5 0.5 0.5 0.5 0.2 0.2 0.2 0.2

5The table provides a comprehensive overview of coefficients and their associated proportions of missing
values across the scenarios. It is evident that the proportion of missing values is consistently low for all
coefficients, whereas KC, HB, and ρ have no missing values.
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Figure A1. 12-item conditions with an increasing violation of τ-equivalence.
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Figure A2. Effect sizes for nontrivial main and interaction effects.
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Figure A3. Three-dimensional conditions.
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Figure A4. Effect sizes of particular factors and nontrivial interactions per coefficient for multidi-
mensional conditions with normal distribution and continuous scale.
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Figure A5. Effect sizes of particular factors and nontrivial interactions per coefficient for multidi-
mensional conditions with non-normal distribution and continuous and discrete scale.
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