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Abstract

To investigate the structure of individual differences in performance on behavioral tasks,
Haaf and Rouder (2017) developed a class of hierarchical Bayesian mixed models with
varying levels of constraint on the individual effects. The models are then compared via
Bayes factors, telling us which model best predicts the observed data. One common criticism
of their method is that the observed data are assumed to be drawn from a normal distribution.
However, for most cognitive tasks, the primary measure of performance is a response time,
the distribution of which is well known not to be normal. In this paper, I investigate the
assumption of normality for two datasets in numerical cognition. Specifically, I show that
using a shifted lognormal model for the response times does not change the overall pattern
of inference. Further, since the model-estimated effects are now on a logarithmic scale, the
interpretation of the modeling becomes more difficult, particularly because the estimated
effect is now multiplicative rather than additive. As a result, I recommend that even though
response times are not normally distributed in general, the simplification afforded by the
Haaf and Rouder approach provides a pragmatic approach to modeling individual differences
in behavioral tasks.
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1. Introduction

In the behavioral sciences, a common target of investigation is individual performance
on behavioral tasks, and particularly whether this individual performance can predict other
measureable outcomes. As an illustrative example, consider a simple number comparison
task where subjects are asked to choose the physically larger of two number digits presented
in different physical sizes on a screen (e.g., a large numeral 2 displayed alongside a small
numeral 8). Performance on this task routinely exhibits a size congruity effect (Henik
& Tzelgov, 1982), where people are slower (on average) to choose the larger when the
numbers are presented in a physical size configuration that is incongruent with their
relative numerical magnitude. Importantly, researchers often use individual performance
on this task to predict other meaningful behavioral outcomes, especially those related to
mathematics anxiety and ability. For example, Rubinsten and Henik (2005) found that people
with developmental dyscalculia exhibited a smaller size congruity effect compared to a
typical-functioning control group, which they interpreted as evidence for a lack of automatic
number activation in the dyscalculia group.

Given that individual performance on behavioral tasks is used in this metric sense to
predict other tangible outcomes, a natural question concerns whether this metric scale has
any constraint. Specifically, Haaf and Rouder (2017) proposed that a method to ascertain
whether people differ in performance solely in a quantitative fashion (i.e., everybody exhibits
the effect in the same direction, but differ in the size of the effect), or whether there are
also qualitative individual differences, where some people exhibit a positive effect, but
others exhibit the effect in the opposite direction. Such questions are becoming important
in the psychological and behavioral sciences, particularly in terms of providing much-
needed constraint on the plethora of observed “effects” and helping to guide more targeted
theoretical development about human behavior (Rouder & Haaf, 2021).

The purpose of this paper is to examine one of the fundamental statistical assumptions
of the Haaf and Rouder (2017) method for modeling constraint on behavioral individual
differences. In brief, the method relies on assuming that the resultant behavioral measures
(e.g., response times) are drawn from a normal distribution whose mean is represented
as a linear combination of a variable intercept and slope (effect). In turn, each of these
parameters is further drawn from normal distributions centered at 0 and scaled according
to overall variability. Different models of individual difference structure are instantiated by
placing varying levels of constraint on the slope/effect parameter. Critical to the Haaf and
Rouder (2017) method is a Bayesian comparison of these models, which uses a combination
of the well-known analysis of variance approach developed by Rouder et al. (2012) and the
encompassing prior approach (Faulkenberry, 2019). The approach has been used success-
fully to investigate the structure of individual differences in many behavioral phenomena,
including Stroop and Simon effects (Haaf & Rouder, 2019), the truth effect (Schnuerch et al.,
2020), numerical distance effects (Vogel et al., 2021), and the numerical size congruity effect
(Faulkenberry & Bowman, 2020).

One criticism of the Haaf and Rouder (2017) method is the assumption that raw perfor-
mance measures are drawn from a normal distribution. This criticism is particularly salient
when the primary measure is response time, as response times are well known to exhibit a
distinct positive skew. While there are many methods for modeling response times using
skewed distributions (i.e., ex-Gaussian, inverse Gaussian/Wald, etc.), the implementation of
such distributions into the Haaf and Rouder (2017) framework is quite difficult. Compared
to a normal distribution, these distributions involve multiple parameters, and so it is not
clear on which parameter the congruity effect should be applied. Further, the Haaf and
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Rouder (2017) method is specifically built on an established computational framework built
into the BayesFactor package in R, so deviating from this method would require the user to
develop many new techniques from first principles. As an alternative, one simple approach
that might prove attractive is to assume that the observed response times follow a (shifted)
lognormal distribution; then, the analyst may simply transform the observed response times
by first shifting by a fixed amount (e.g., 200 ms is a common recommendation) and then
taking the (natural) logarithm. The resulting distribution of (log) response times is then
approximately normal and may be “fed into” the Haaf and Rouder (2017) method with little
difficulty.
The purpose of this brief paper is to investigate this approach and to argue two points:
1. the inferences obtained from the shifted lognormal model are practically equivalent
as those obtained from the original model with the normality assumption; and
2. interpreting the estimated model parameters from the shifted lognormal model is
nontrivial and potentially inappropriate in the context of these behavioral tasks.

2. Bayesian model implementation

First, I will describe the Bayesian mixed model approach developed by Haaf and Rouder
(2017), particularly as applied to behavioral tasks where the primary observed data are
response times. Before going into the details, I will reiterate that the main aim of this
approach is to build a (hypothetical) generative process for each observed response time in
a behavioral task. That is, there is no aggregation of trials at the individual or group level
that needs to occur.

Each observed response time is assumed to be the sum of four components: (i) a grand
mean g; (ii) a subject-specific adjustment « to the grand mean (i.e., so that p + @ gives a
“random” intercept for each subject); (iii) a subject-specific effect term &; and (iv) a noise
term e. The hierarchical model is then built by assuming each of these components is drawn
from some to-be-defined probability distribution. Of particular interest is the distribution
that generates each subject’s effect term—this distribution is the one on which we build our
competing models of individual difference structure.

We let Yjj; denote the response time for the kth replicate of the ith subject in the jth
experimental condition (usually two conditions, so that j = 1,2). As described, our random
effects linear model on the vector of response times Y;j; looks like:

Yijg ~ N (e + 0 + x;- §,0%).

Here, i denotes the grand mean intercept and ¢; represents the specific intercept adjustment
for subject i. The term x; is a binary variable which codes the experimental condition for
each trial. For example, suppose we are interested in modeling a congruity effect, where
response times on incongruent trials generally increase compared to those of congruent
trials. In this case, for congruent trials (condition j = 1), we would set x; = 0, and for
incongruent trials (condition j = 2), we would set x, = 1. Under such a specification, §;
then represents the (random) congruity effect for subject i. Finally, 0% represents the latent
sampling variance of the observed response times.

The next step is to propose a structure for the parent distribution of random effects J;
(i.e., the distribution from which each subject’s size-congruity effect §; is randomly drawn).
We define four possible populations for these §;, each of which mathematically specifies one
of four possible theoretical positions about the distribution of effects.
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2.1. The unconstrained model

The unconstrained model, denoted ., allows the effects §; to vary both in type/quality
(i.e., positive or negative) as well as magnitude. As such, with .#, we place no constraint
on the individual effects §;. We define this model as

ﬂu : 51 ~ ‘/V(V’ 172)’

where vand 7 represent the mean and variance, respectively, of the distribution of individual
effects 6;.

2.2. The positive-effects model

The positive-effects model, denoted .Z ., hypothesizes that effects J; only vary in quantity
(i.e., they are always positive, but possibly differ in magnitude between subjects). ./, is a
constrained model in the sense that it specifies the assumption that all individual effects §;
are positive. That is,

My 8~ N,

where ./, denotes a truncated normal distribution with lower bound 0.

2.3. The common-effect and null models

Whereas the unconstrained and positive-effects models are usually the primary players
in studies on individual structure, the common-effect and null models are defined to provide a
critical check of experimental design. The common-effect model places even more constraint
on the distribution of effects by assuming that each individual has the same effect. That is,

'ﬂl: 51':1/,

Such a model serves to probe the following question: if the common-effect model was the
best predictor of the observed data, one would be forced to question the efficiency of the
experimental design as a test to elicit individual differences in the effect. As one might
expect, the null model is the most constrained of the four, as it specifies that each subject’s
size-congruity effect is zero:

ﬂo : 51' =0.

It is used for a similar reason: if the null model was the best predictor of the observed data,
then one must question the efficiency of the experimental design to elicit effects of any sort.

2.4. Prior specifications

Generally, most applications of the Haaf and Rouder (2017) method follow similar
“default” prior specifications. The critical parameters I'll describe here are &, v, and 7°.
The default procedure is to use the g-prior approach (Rouder et al., 2012; Zellner, 1986),
which re-expresses these parameters as a standardized effect size. To see how this works,
consider the collection of individual effect parameters &;. We define g5 = ?/0?, yielding a
hyperparameter that casts the variability of § in terms of the ratio of true variability 7 to
sampling variability o2. With this we can re-write our unconstrained model as

ﬂu : 51 -~ ‘/V(V’ géo'z)

Similarly, we may scale the mean size-congruity effect vin terms of sampling variability and
get a new hyperparameter g,. Continuing up the hierarchy, these new (hyper)parameters
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need priors as well. The default specification (Zellner, 1986) is to use scaled inverse-y?
distributions with one degree of freedom and scale r2.

To be clear, the g-prior setup is quite clever, as it completely describes these critical
parameters in terms of sampling variability o%. By doing this, we convert the problem of
specifying priors on &, v, and 72 into one where we simply need to specify the expected
variability of our effects relative to the expected overall variability of the observed response
times. Like Haaf and Rouder (2017), I will use o = 300 ms as a prior expectation for the
variability of observed response times.

Now we can actually finish setting our priors. First we consider g,, the g-prior on
the mean size-congruity effect. With the g-prior setup, we assume that v ~ (0, g,02),
where g, ~ Scale-inv-y?(r?). The scale parameter r, should reflect our prior belief about the
relative magnitude of our expected effects. For the types of effects we often see in numerical
cognition (and certainly the types of tasks we will describe in this paper), I usually expect
such effects to be, on average, around 50 ms, or 1/6 of the expected overall trial-by-trial
variability (o = 300 ms). Thus, we setr,, = 1/6.

Second, we consider ggs, which describes the variability of individual effects around the
mean effect. With the g-prior setup, we assume that g5 ~ Scale-inv- )(z(rg). Like Haaf and
Rouder (2017), we set rs = 1/10, which would indicate that the expected variability of the
effect across individuals should be about 1/10 of ¢ = 300 ms, or around 30 ms.

2.5. Model comparison

Since our goal is to capture the latent structure of individual differences in the effects we
observe in our behavioral task, our problem is first and foremost one of model comparison.
That is, we ask which of the four competing models defined above is the most adequate as a
predictor of our observed data? To answer this question, we use Bayes factors (Jeffreys, 1961;
Kass & Raftery, 1995), which index the relative predictive adequacy of two models by com-
paring the marginal likelihood of observed data under one model to another (Faulkenberry,
2022; Faulkenberry et al., 2020). For example, a Bayes factor of 10 indicates that the observed
data are 10 times more likely under one model compared to another. Techniques for com-
puting Bayes factors among three of the four models above (A&, #, # ) were previously
developed by Rouder et al. (2012) and are implemented in the BayesFactor (Morey et al.,
2018) package in R (R Core Team, 2022). The Bayes factor between the constrained positive
effects model ./, and the unconstrained model ., is computed by the encompassing prior
method (Faulkenberry, 2019; Klugkist et al., 2005), which is based on counting the number
of posterior samples of .#,, which obey the constraint placed by .Z ., then comparing this
to the number of prior samples which obey the same constraint.

3. Case studies

My goal in this paper is to compare the inferences from the default Haat and Rouder
(2017) method, which assumes that the observed response times are drawn from a normal
distribution, to a modified approach where the observed response times are drawn from
a lognormal distribution. To do this, I will perform two case studies where I analyze two
datasets that have already appeared in the literature. In Case study 1, I will model the
latent structure of individual differences in the size congruity effect (Henik & Tzelgov, 1982),
a classic phenomenon in numerical cognition in which people are slower to choose the
larger of two presented numbers when the numbers are presented in a physical size that
is incongruent with their relative numerical magnitude (e.g., a large numeral 2 displayed
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alongside a small numeral 8). The data for Case study 1 (19 499 response times from N = 53
subjects) were originally reported in Faulkenberry and Bowman (2020). In Case study 2,
I will model the latent structure of individual differences in the unit decade compatibility
effect, another classic phenomenon in numerical cognition (Nuerk et al., 2001). The data for
Case study 2 (11 600 response times from N = 53 subjects) are unpublished but available as
part of a collaborative pregistration project by Cipora et al. (2021).

3.1. Case study 1—size congruity effect

The first analysis I will describe is the default Haaf and Rouder (2017) method, which
places a normal distribution on the observed response times. The individual effect estimates
from the unconstrained model are displayed in the left column of Figure 1. We can see
that the observed effects for each subject (denoted by black crosses) span from —14.59 ms
to 142.10 ms. In this context, we compute observed effects by subtracting each subject’s
mean response time for congruent trials from the mean response time for incongruent trials.
With the exception of one subject, the observed size-congruity effects are all constrained
to be positive. Estimates from the hierarchical Bayesian model are displayed as blue dots
with shaded 95 % credible intervals. These estimates are computed as means of the posterior
samples for each §;, and the 95 % credible intervals are computed as the central 95 % of the
posterior samples (i.e., ranging between the 2.5 % and 97.5 % quantiles of the samples). The
red dashed line represents an (posterior) estimated mean effect of v = 60 ms.

As is usually seen with this type of modeling (and hierarchical modeling in general), we
observe a fair amount of shrinkage in our estimates. Notice that the estimated effects (the
blue dots) extend over a smaller range (8.84 ms to 115.73 ms) than the observed effects (the
black crosses; —14.59 ms to 142.10 ms). This shrinkage reflects how the hierarchical model
accounts for sampling variability at all levels.

The right column of Figure 1 shows the Bayes factor model comparisons. As we can
see, the observed data were 7.19 times more likely under the positive-effects model ./,
than under the unconstrained model ./,. If we assume 1-to-1 prior odds for .Z, and
M, this means that our posterior odds in favor of ./, have increased to 7.19-to-1, which
is equivalent to a posterior probability of Pr(.#, | data) = 0.88. These models were
overhelmingly preferred over the common-effect model .# and the null model .#, as /%,
was more likely to have predicted the observed data by factors of 10'!-to-1 and 101°®-to-1,
respectively.

Next, we perform the same procedure while assuming a shifted lognormal distribution
on the observed response times. To do this, we transform the observed response times
by first subtracting a constant amount from each response time (here, I chose a shift of
200 ms), then taking the (natural) logarithm of the result. As we can see in Figure 2, the
transformed distribution appears approximately normal, indicating that the lognormal
model is appropriate in this case study as well. The resulting transformed data can be
directly modeled as above, the results of which I will now describe.

The overall similarity of these results with the first analysis is striking. We see very
similar patterns of observed effects, estimated effects, and shrinkage. For the log transformed
data, we see a posterior estimated common effect (red dashed line) v = 0.15. If we back-
transform this back to the original response time scale, we get an estimated common effect
of 1.16. Because the data are on a logarithmic scale, this effect is multiplicative, so an
estimated effect of 1.16 is a 16 % increase in response times. For these data, this is roughly
equivalent to a response time increase of 86 ms.

The similarity persists with the Bayes factor comparisons. In the right column of
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Figure 1: Individual effect estimates (left column) and Bayes factor model comparisons
(right column) for Case study 1 under a normal distribution assumption. Posterior means
and 95 % credible intervals for §; are represented by blue dots and a gray band, respectively.
The + symbols represent the observed size-congruity effect for each subject. The red dashed-
line represents the estimated mean size-congruity effect v. For the model comparisons, the
red box denotes the winning model, and Bayes factors are displayed beside each arrow.
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Figure 2: Distributions of observed response times in the size congruity task (Case study
1). The left panel displays the original observed response times, whereas the right panel

displays the log-transformed response times.
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Figure 3 we can see the observed data were 6.21 times more likely under the positive-effects
model ./, than under the unconstrained model .#,,. Further, these models were again
overhelmingly preferred over the common-effect model .# and the null model .Z,.
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Figure 3: Individual effect estimates (left column) and Bayes factor model comparisons
(right column) for Case study 1 under a lognormal distribution assumption. Posterior means
and 95 % credible intervals for §; are represented by blue dots and a gray band, respectively.
The + symbols represent the observed size-congruity effect for each subject. The red dashed-
line represents the estimated mean size-congruity effect v. For the model comparisons, the
red box denotes the winning model, and Bayes factors are displayed beside each arrow.

In all, it seems that with the exception of the raw effect estimate, the inferences we
obtain from using a shifted lognormal model on observed response times is very similar
to that when we use the default normal specifications recommended by Haaf and Rouder
(2017). In both cases, the positive effects model is preferred over the unconstrained model.

3.2. Case study 2—unit decade compatibility effect

As above, I will first report the results of modeling using the default Haaf and Rouder
(2017) method with a normal distribution on the observed response times. The individual
effect estimates from the unconstrained model are displayed in the left column of Figure 4.
The observed effects for each subject (denoted by black crosses) span from —5.37 ms to
137.52 ms. Similar to Case study 1, the observed effects were mostly positive. Estimates
from the hierarchical Bayesian model are displayed as blue dots with shaded 95 % credible
interval. The red dashed line represents an (posterior) estimated mean effect of v = 43 ms.
Note that we again observe shrinkage in our estimates, as the estimated effects extend from
15.04 ms to 92.80 ms), a smaller range that that of the observed estimates.

The right column of Figure 4 shows the Bayes factor model comparisons. In this case, the
observed data were 4.17 times more likely under the positive-effects model .Z . than under
the unconstrained model ./Z,,. If we assume 1-to-1 prior odds for ./#, and .#,, this means
that our posterior odds in favor of .# have increased to 4.17-to-1, which is equivalent
to a posterior probability of Pr(./Z, | data) = 0.81. As in Case study 1, these models were
strongly preferred over the common-effect model .#; and the null model .Z .

Next, we run the analysis again, but this time assuming a shifted lognormal distribution
on the observed response times. As before, we transform the observed response times
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Figure 4: Individual effect estimates (left column) and Bayes factor model comparisons
(right column) for Case study 2 under a normal distribution assumption. Posterior means
and 95 % credible intervals for §; are represented by blue dots and a gray band, respectively.
The + symbols represent the observed size-congruity effect for each subject. The red dashed-
line represents the estimated mean size-congruity effect v. For the model comparisons, the
red box denotes the winning model, and Bayes factors are displayed beside each arrow.

by first subtracting a constant amount from each response time (here, I chose a shift of
200 ms), then taking the (natural) logarithm of the result. As we can see in Figure 5, the
transformed distribution appears approximately normal, indicating that the lognormal
model is appropriate here.
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Figure 5: Distributions of observed response times in the numerical comparison task (Case
study 1). The left panel displays the original observed response times, whereas the right
panel displays the log-transformed response times.

As with Case study 1, we see very similar patterns of observed effects, estimated effects,
and shrinkage in Figure 4. For the log transformed data, we see a posterior estimated
common effect (red dashed line) v = 0.08. On the original response time scale, this is
equivalent to an estimated (multiplicative) common effect of 1.09, a 9 % increase in response
times. For these data, this is roughly equivalent to a response time increase of 57 ms.
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The Bayes factor comparisons also present the same message. In the right column of
Figure 6 we can see the observed data were 8.40 times more likely under the positive-effects
model ./, than under the unconstrained model .Z,,. Further, these models were again
preferred over the common-effect model .#; and the null model .Z,. Again, the inference
from using a shifted lognormal model on observed response times is very similar to that
when we use the default normal specifications recommended by Haaf and Rouder (2017). In
both cases, the positive effects model is preferred over the unconstrained model.
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Figure 6: Individual effect estimates (left column) and Bayes factor model comparisons
(right column) for Case study 2 under a lognormal distribution assumption. Posterior means
and 95% credible intervals for §; are represented by blue dots and a gray band, respectively.
The + symbols represent the observed size-congruity effect for each subject. The red dashed-
line represents the estimated mean size-congruity effect v. For the model comparisons, the
red box denotes the winning model, and Bayes factors are displayed beside each arrow.

4. Simulation study

As we can see from the previous two sections, both case studies lead to a common
conclusion. Even though the observed response times exhibit positive skew, the inference
we obtain from applying the default Haaf and Rouder (2017) method (which assumes a
normal distribution on response times) is practically the same as when we apply a shifted
lognormal model on response times. To extend support for this tentative conclusion, I
performed a simulation study to benchmark and compare the long-term performance of
both methods against data which are assumed to be generated from either the positive-
effects model or the unconstrained model. In this section, I describe the simulation study
and report its results. The simulation was performed in R, and the simulation script can be
viewed at https://bit.ly/3D9QGIZ.

For each simulation run, the data were assumed to be generated from a hierarchical
shifted-Wald distribution (e.g., Anders et al., 2016; Faulkenberry et al., 2018). In general,
a shifted-Wald distribution represents the collection of stopping times for a continuous
accumulator with drift toward a fixed response boundary. The distribution exhibits a positive
skew characteristic of response time distributions, which positions it as a good model for
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use here. The shifted-Wald can be completely described by three parameters: drift rate y,
which represents the rate at which information is accumulated during stimulus presentation;
response threshold @, which represents the amount of information that must be accumulated
before a decision can be initiated; and shift 6, which represents the remaining portion of
the response time on a trial which is not accounted for by the accumulation process (i.e.,
perceptual encoding, motor preparation, etc.).

To explain how the data were simulated, consider the context of a typical repeated-
measures experiment with an equal number of congruent and incongruent trials. Let us
assume that N subjects each produce k trials in the congruent condition. The k “observed”
RTs for each subjecti = 1, ..., N are assumed to be randomly drawn from a subject-specific
shifted-Wald distribution with drift rate y;, response threshold ¢;, and shift 6. The collection
of parameters y;, o;, and 6; for i = 1,..., N were each randomly drawn from normal distribu-
tions with mean and variance set to match the shifted-Wald parameter estimates given in
Faulkenberry et al. (2018). That is:

¥i ~ N(3.91,0.70%)
o ~ N(0.92,0.17%)
6; ~ #(0.32,0.05%) .

To produce the k incongruent trials for each subject i, I followed the same sampling
scheme, but additionally instantiated a congruity effect §; on the shift parameter 6, for each
subjecti = 1, ..., N. Thus the observed incongruent trial RTs for subject i were generated
from a shifted-Wald distribution with drift rate y;, response threshold ¢;, and shift 8, + §;.
Individual differences in the congruity effects were generated following the method of
Rouder and Haaf (2019), who assumed that the subject-level effects §; were drawn in a
hierarchical fashion as & ~ 4" (us, 0'3), where we must further specify our assumptions on
Us and og. It is with these assumptions that we can specify the two models which constrain
the individual effects §;. For data generated under the unconstrained model .#,, the overall
mean effect yi5s was drawn as p5 ~ #/(0.1,0.12). For data generated under the positive-effects
model ./, ji5 was assumed to be drawn from a truncated normal: ys ~ 4,.(0.1,0.05%). For
both models, we assumed O'g ~ Inv-Gamma(2, 0.03%).

On each simulation run, the collection of 2 - k - NRTs were submitted to each of the
modeling workflows described earlier in the paper. In the first workflow, I applied the
default method of Haaf and Rouder (2017), which assumes the observed RTs are generated
via a normal distribution. In the second workflow, I transformed the observed RTs by first
subtracting 0.95 times the minimum observed RT (i.e., shifting the distribution to remove the
leading edge) and then taking the natural logarithm of the shifted RTs. In all, I completed
200 simulation runs in each of 6 conditions created by systematically varying N and k to
reflect common experimental designs in the cognitive and behavioral sciences. Specifically,
I crossed N = 20, 80 with k = 50, 100, 200.

First, let us consider the accuracy of the default and log-transform methods. Tables 1
and 2 depict the accuracies obtained from the two methods for each of our 6 experimental
conditions for data generated under the positive-effects model ., and the unconstrained
model ., respectively. For data generated under ., inference was very accurate for
conditions with N = 20 subjects. Even with smaller numbers of trials (e.g., k = 50), both
the default and log-transform methods were largely correct in their model choices, and
there was no obvious difference between the two methods. For larger numbers of subjects
(N = 80), the results were curious. The log-transform method was consistently more
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accurate than the default method of Haaf and Rouder (2017), with an accuracy advantage
between 5% and 9 %. Both methods exhibited smallest accuracy when k = 50, but these
accuracies increased with increasing k. For data generated under .#,,, performance was
consistently at ceiling. Curiously, the worst performance (accuracy = 97 %) occurred in the
condition with a small number of participants (N = 20) each contributing a large number
of trials (k = 200).

Table 1: Model choice accuracy for the default Haaf and Rouder (2017) method and the
log-transform method, calculated as the proportion of datasets simulated under the positive-
effects model .Z , for which BF,, > 1

N =20 N =80
Log- Log-
k  Default transform Default transform
50 0.93 0.93 0.51 0.56
100 0.92 0.93 0.52 0.61
200 0.95 0.97 0.71 0.79

Table 2: Model choice accuracy for the default Haaf and Rouder (2017) method and the
log-transform method, calculated as the proportion of datasets simulated under the positive-
effects model .Z, for which BF,, > 1

N =20 N =80
Log- Log-
k  Default transform Default transform
50 0.99 0.99 0.99 0.99
100 0.99 0.99 0.99 0.99
200 0.97 0.97 0.99 0.99

While accuracy of the methods is important to assess, the critical claim of this paper is
that the default workflow of Haaf and Rouder (2017) produces the same inference as the log-
transform method. We can assess this claim empirically by considering the consistency of
the inferences obtained by both methods in our simulated datasets. Table 3 shows that these
methods exhibit a great deal of consistency. For data generated under .# ,, model choice
consistency was extremely high (at least 95 %) for conditions with N = 20. Similar to the
results with accuracy above, model choice consistency was not quite as high for conditions
with N = 80, though consistency did increase with increasing k. For data generated under
A ,, model choice consistency was at ceiling for all conditions.

5. Conclusion

The main aim of this paper was to compare the inferences from two methods for assessing
the structure of individual differences in behavioral tasks. The first of these two methods
was the default Haaf and Rouder (2017) method, which assumes that the observed response
times are drawn from a normal distribution. The second was a modified approach where the
observed response times are assumed to follow a lognormal distribution. Two case studies
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Table 3: Model choice consistency for the default Haaf and Rouder (2017) method and the
log-transform method, calculated as the proportion of datasets for which both methods
choose the same model

Positive-effects Unconstrained

k N=20 N=8 N=20 N=380
50 0.95 0.83 0.99 0.99
100 0.95 0.85 0.99 0.99
200 0.98 0.90 0.99 0.99

and a simulation lead to a common conclusion. Even though observed response times
typically exhibit positive skew, the inference we obtain from applying the default Haaf and
Rouder (2017) method is practically equivalent to those obtained when we apply a shifted
lognormal model to the response times. As we saw in both case studies, applying a shift and
then taking the natural logarithm of the observed response times does indeed transform
the distribution of observed data into one which is approximately normal. Certainly, the
Haaf and Rouder (2017) method works well for this transformed data, but the penalty is
in the interpretation. When the observed data is transformed to the log scale, the “effects”
we see in the data (i.e., differences between the observed data that occur as a function of
the experimental manipulation) are now differences in the log scale. Differences in the
log scale become multiplicative differences (i.e., quotients) when we transform back to the
original scale of the response times. While multiplicative effects can make sense in many
contexts, such effects are not typical in the context of effects on response time. Indeed, most
typical response time models assume that total response time is the sum of its constituent
subprocesses (Ashby & Townsend, 1980; Schwarz, 2001). As such, it is not clear how one
of these behavioral or cognitive effects could reasonably interpreted in a multiplicative
context.

Given that (i) the pattern of inference does not change, and (ii) the interpretation of
estimated effects becomes less clear, there is no compelling reason to reject the normal
assumption on response times when applying the Haaf and Rouder (2017) method for
investigating individual difference structures in behavioral tasks.
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